Abstract
Influences of vacuum freeze drying, heat pump drying and hot air drying on the antioxidant and antibacterial properties, volatile flavor components and sensory properties of Chuzhou Chrysanthe-mum was studied using fresh Chuzhou Chrysanthemum as a raw material. The results indicated that Chuzhou Chrysanthemum with vacuum freeze drying (T1) exhibited the strongest scavenging activity of free radical, inhibition effect of lipid peroxidation and antibacterial activity against two foodborne pathogenic bacteria (Staphylococcus aureus and Escherichia coli), and has the best sensory qualities. The biological activities and sensory scores of each sample decreased in the order of T1 (vacuum freeze drying) > T2 (heat pump drying) > T3 (hot air drying). The volatile flavor components of Chuzhou Chrysanthemum dried by three drying methods were analyzed by gas chromatography-mass spectrometry (GC-MS) with solid-phase micro-extraction (SPME). A total of 71, 88 and 56 volatile flavor components were detected in T1, T2 and T3, respectively. Among them, Terpenes were main flavor compounds, the content of which was exceeded by more than 45%. Therefore, vacuum freeze drying was the best dehydration process of Chuzhou Chrysanthemum.
Publication Date
11-28-2018
First Page
193
Last Page
199
DOI
10.13652/j.issn.1003-5788.2018.11.039
Recommended Citation
Ge, ZHAN; Yanhui, SUN; Jiahui, YAN; Jintao, WANG; Mengyuan, SUN; and Men, LONG
(2018)
"Effects of drying process on the antioxidant and antibacterial properties and volatile flavor components of Chuzhou Chrysanthemum,"
Food and Machinery: Vol. 34:
Iss.
11, Article 38.
DOI: 10.13652/j.issn.1003-5788.2018.11.039
Available at:
https://www.ifoodmm.cn/journal/vol34/iss11/38
References
[1] 王龙, 王德群, 韩邦兴. 滁菊茶用与药用的发展变化[J]. 安徽中医学院学报, 2010, 29(6): 75-77.
[2] 张玲, 王德群, 王晴晴. 传统硫熏加工与现代微波加工滁菊质量比较[J]. 安徽中医学院学报, 2011, 30(1): 69-71.
[3] KIM S J, MYUNG N Y, SHIN B G, et al. Protective effect of a Chrysanthemum indicum containing formulation in cadmium-induced ototoxicity[J]. American Journal of Chinese Medicine, 2011, 39(3): 587-600.
[4] HU C K, LEE Y J, COLITZ C M, et al. The protective effects of Lycium barbarum and Chrysanthemum morifolum on diabetic retinopathies in rats[J]. Veterinary Ophthalmology, 2011, 39(3): 587-600.
[5] YUAN Jun, HAO Li-jun, WU Gang, et al. Effects of drying methods on the phytochemicals contents and antioxidant properties of chrysanthemum flower heads harvested at two developmental stages[J]. Journal of Functional Foods, 2015, 19: 786-795.
[6] KIM W W, GHIMERAY A K, WU Jin-cheng, et al. Effect of far infrared drying on antioxidant property, anti-inflammatory activity, and inhibitory activity in A549 cells of Gamguk (Chrysanthemum indicum L. ) flower[J]. Food Science and Biotechnology, 2012, 21(1): 261-265.
[7] 胡俊. 滁菊的化学成分及其活性研究[D]. 合肥: 安徽大学, 2015: 1-15.
[8] 张蓓蓓. 滁菊总黄酮的镇痛抗炎作用及部分机制研究[D]. 合肥: 安徽医科大学, 2013: 23-26.
[9] 张成孜. 滁菊多糖保健功效研究[D]. 合肥: 安徽农业大学, 2013: 11-18.
[10] 徐建. 滁菊干燥方法及储藏条件的研究[D]. 合肥: 安徽中医药大学, 2015: 32-33.
[11] ZHAN Ge, PAN Lei-qing, TU Kang, et al. Antitumor, antioxidant, and nitrite scavenging effects of Chinese water chestnut (Eleocharis dulcis) peel flavonoids[J]. Journal of Food Science, 2016, 81(10): H2 578-H2 586.
[12] AND P L, LAAKSO S. Inhibition of linoleic acid oxidation by interaction with a protein-rich oat fraction[J]. Journal of Agricultural and Food Chemistry, 2000, 48(11): 5 654-5 657.
[13] 陈彩薇, 吴晖, 赖富饶, 等. 米糠中不同存在形态酚类物质的抗氧化活性研究[J]. 现代食品科技, 2015, 31(2): 42-46.
[14] EDZIRI H L, SMACH M A, AMMAR S, et al. Antioxidant, antibacterial, and antiviral effects of Lactuca sativa extracts[J]. Industrial Crops and Products, 2011, 34(1): 1 182-1 185.
[15] SOUZA H A, BRAGAGNOLO N. New method for the extraction of volatile lipid oxidation products from shrimp by headspace-solid-phase microextraction-gas chromatography-mass spectrometry and evaluation of the effect of salting and drying[J]. Journal of Agricultural and Food Chemistry, 2014, 62(3): 590-599.
[16] 黄风格, 贠嫣茹, 卫世乾. 菊花干制工艺研究[J]. 南阳师范学院学报, 2012, 11(6): 41-46.
[17] JING Si-qun, CHAI Wen-jie, GUO Gai, et al. Comparison of antioxidant and antiproliferative activity between Kunlun Chrysanthemum flowers polysaccharides (KCCP) and fraction PII separated by column chromatography[J]. Journal of Chromatography B, 2016, 1 019: 169-177.
[18] LEE B H, NAM T G, PARK W J, et al. Antioxidative and neuroprotective effects of volatile components in essential oils from Chrysanthemum indicum Linné flowers[J]. Food Science and Biotechnology, 2015, 24(2): 717-723.
[19] CHEN Liang-mian, KOTANI A, KUSU F, et al. Quantitative comparison of caffeoylquinic acids and flavonoids in Chrysanthemum morifolium flowers and their sulfur-fumigated products by three-channel liquid chromatography with electrochemical detection[J]. Chemical and Pharmaceutical Bulletin, 2015, 63(1): 25-32.
[20] AN Ke-jing, ZHAO Dan-dan, WANG Zheng-fu, et al. Comparison of different drying methods on Chinese ginger (Zingiber officinale Roscoe): Changes in volatiles, chemical profile, antioxidant properties, and microstructure[J]. Food Chemistry, 2016, 197: 1 292-1 300.
[21] NEGI P S, CHAUHAN A S, SADIA G A, et al. Antioxidant and antibacterial activities of various seabuckthorn (Hippophae rhamnoides L. ) seed extracts[J]. Food Chemistry, 2005, 92(1): 119-124.
[22] NAKAJIMA Y, ISHIBASHI J, YUKUHIRO F, et al. Antibacterial activity and mechanism of action of tick defensin against Gram-positive bacteria[J]. Biochimica Et Biophysica Acta General Subjects, 2003, 1 624(1/2/3): 125-130.
[23] UKIYA M, AKIHISA T, YASUKAWA K, et al. Constituents of compositae plants 2: Triterpene diols, triols, and their 3-o-fatty acid esters from edible chrysanthemum flower extract and their anti-inflammatory effects[J]. Journal of Agricultural and Food Chemistry, 2001, 49(7): 3 187-3 197.
[24] CHANDRA M, PRAKASH O, KUMAR R, et al. β-Selinene-rich essential oils from the parts of Callicarpa macrophylla and their antioxidant and pharmacological activities[J]. Medicines, 2017, 4(3): 52.
[25] SHAKERI A, AKHTARI J, SOHEILI V, et al. Identification and biological activity of the volatile compounds of Glycyrrhiza triphylla Fisch. & C. A. Mey[J]. Microbial Pathogenesis, 2017, 109: 39-44.
[26] AYOUB I M, YOUSSEF F S, EL-SHAZLY M, et al. Volatile constituents of Dietes bicolor (Iridaceae) and their antimicrobial activity[J]. Zeitschrift Fur Naturforschung C-A Journal of Biosciences, 2015, 70 (7/8): 217-225.
[27] ZENG Lan-ting, LIAO Yin-yin, LI Jian-long, et al. α-Farnesene and ocimene induce metabolite changes by volatile signaling in neighboring tea (Camellia sinensis) plants[J]. Plant Science, 2017, 264: 29-36.
[28] MILLAR J G. Rapid and simple isolation of zingiberene from ginger essential oil[J]. Journal of Natural Products, 1998, 61(8): 1 025-1 026.
[29] WHITFIELD F B. Volatiles from interactions of Maillard reactions and lipids[J]. Critical Reviews in Food Science and Nutrition, 1992, 31(1/2): 1-58.
[30] 邢增涛, 郭倩, 冯志勇, 等. 姬松茸中挥发性风味物质的GC-MS分析[J]. 中药材, 2003, 26(11): 789-791.
[31] 韩婷, 毛健, 姬中伟, 等. 滁菊挥发性成分的全二维气相色谱/飞行时间质谱研究[J]. 食品科学, 2013, 34(2): 159-164.
[32] 廖祯妮, 黄青, 程启明, 等. 云南两个薰衣草品种精油分析[J]. 天然产物研究与开发, 2014, 26(4): 544-549.
[33] 麦雅彦, 杨锡洪, 连鑫, 等. SDE/GC-MS测定南美白对虾的挥发性香气成分[J]. 现代食品科技, 2014, 30(1): 206-210.