•  
  •  
 

Abstract

In order to discriminate adulterated goat milk quickly and objectively, a set of portable electronic tongue detection system was exploited, and a new method of fast identification is developed. When detected in the system, the sample solution was first scanned to obtain the "fingerprint" information of adulterated goat milk, and then the discrete wavelet transform (DWT) was used to obtain the characteristics of the "fingerprint" data. On this basis, the principal component analysis (PCA) was used to determine the quality of goat milk with different adulteration ratio. Particle swarm optimization extreme learning machine (PSO-ELM) was applied to quantitatively predict goat milk with different adulteration proportions. According to the experimental data, PCA could distinguish six kinds of goat milk with different adulteration ratios up to 100%, and it had a good effect on distinguishing adulterated goat milk. In order to realize the quantitative prediction of goat milk with different adulteration ratios, the fitting curve of PSO-ELM goat milk purity prediction model was very close to the measured curve, so the PSO-ELM method was used to establish the quantitative prediction model of goat milk purity with high prediction accuracy. This study might provide new ideas and technical support for qualitative identification and quantitative prediction of adulterated goat milk.

Publication Date

12-28-2018

First Page

53

Last Page

56

DOI

10.13652/j.issn.1003-5788.2018.12.010

References

[1] 刘大龙, 方昉, 门洪, 等. 用于环境检测的电子舌研究[J]. 传感器学报, 2004(1): 1-6.
[2] 史庆瑞, 马泽亮, 周智, 等. 基于电子舌和模式识别的中成药品辨识方法研究[J]. 电子测量与仪器学报, 2017(7): 1 081-1 089.
[3] 刘瑞新, 吴子丹, 李学林. 电子舌在药学领域的应用[J]. 中药与临床, 2011, 2(5): 61-64.
[4] BANERJEE R, TUDU B, SHAW L, et al. Instrumental testing of tea by combining the responses of electronic nose and tongue[J]. Journal of Food Engineering, 2011, 110: 356-363.
[5] TIWARI K, TUDU B, BANDYOPADHYAY R, et al. Identification of monofloral honey using voltammetric electronic tongue[J]. Journal of Food Engineering, 2013, 117: 205-210.
[6] 郑海霞, 尹芳缘, 王敏敏, 等. 基于电子鼻的牛奶品质预测方法研究[J]. 中国食品学报, 2013(7): 189-194.
[7] 金嫘, 白丽娟, 彭小雨, 等. 采用电子鼻检测羊奶中的牛奶掺入[J]. 食品发酵与工业, 2015(4): 165-168.
[8] 王二丹, 鲁利利, 张泰铭, 等. 非线性化学群集成分分析法测定掺杂在羊奶中的牛奶和马奶含量[J]. 高等学校化学学报, 2015(6): 1 052-1 060.
[9] 贾茹. 电子鼻对羊奶中的蛋白质掺假及多组分混合掺假的识别研究[J]. 食品科学, 2017, 38(8): 308-312.
[10] 史庆瑞, 国婷婷, 殷廷家, 等. 基于电子舌检测的橙汁贮藏品质研究[J]. 食品与机械, 2017(11): 137-142, 203.
[11] 林兆彬, 胡毅, 郑江龙, 等. 小波变换压制噪声在单道地震资料处理中的应用[J]. 应用海洋学学报, 2018(1): 113-119.
[12] 冯艳玲. 一种基于数据挖掘的HIFU温度估计方法[J]. 电脑知识与技术, 2011, 7(16): 3 896-3 898.
[13] 张水清, 黄绍敏, 郭斗斗, 等. 基于主成分分析法的土壤肥力评价[J]. 安徽农业科学, 2011, 39(2): 1 096-1 097.
[14] QIU Shan-shan, WANG Jun, TANG Chen, et al. Comparison of ELM, RF, and SVM on E-nose and E-tongue to trace the quality status of mandarin[J]. Journal of Food Engineering, 2015, 166: 193-203.
[15] 陈晓青, 陆慧娟, 郑文斌, 等. 自适应混沌粒子群算法对极限学习机参数的优化[J]. 计算机应用, 2016(11): 3 123-3 126.
[16] 张颖, 李梅. 基于粒子群优化极限学习机的水质评价新模型[J]. 环境科学与技术, 2016(5): 135-138.
[17] 徐大明, 杜永贵, 孙传恒, 等. 基于改进粒子群优化极限学习机的养殖氨态氮含量预测模型[J]. 江苏农业科学, 2017, 45(4): 183-186.
[18] 李婉华, 陈羽中, 郭昆, 等. 基于改进粒子群优化的并行极限学习机[J]. 模式识别与人工智能, 2016(9): 840-849.
[19] 马泽亮, 殷廷家, 国婷婷, 等. 采用电子舌法检测橙汁及酒的品牌及纯度[J]. 食品工业科技, 2018(8): 190-194.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.