Abstract
The immersion ultrasonic crushing device under 20 kHz is investigated in this study. Combined the sound field analysis and the finite element method, we firstly examine the acoustic mode properties of ultrasonic crushing material cavity on different sound field conditions, i.e. the height of liquid level and the position of sound source, and then explore the distribution of ultrasonic cavitation field and the change laws on the average acoustic energy density. Finally, experiments with acoustic measurement methods and image acquisition are made to verify these explorations. Experimental results shows that the distribution of ultrasonic cavitation field is related to the acoustic modal properties of the sound field. With the value of material cavity radius fixed, when the liquid level reaches the resonant of material cavity at height, the average acoustic energy density in the field is higher and the cavitation effect is significantly enhanced, and the distribution of ultrasonic cavitation field is found similar to that of the material cavity sound field. In the resonance level, the position of the sound source has obvious effect on the average acoustic energy density and cavitation enhancement.
Publication Date
12-28-2018
First Page
70
Last Page
74
DOI
10.13652/j.issn.1003-5788.2018.12.015
Recommended Citation
Lili, FENG; Bin, LIU; Xue, WU; Xuedong, XU; and Zilu, LI
(2018)
"Research on the effect of acoustic mode on ultrasonic broken cavitation field,"
Food and Machinery: Vol. 34:
Iss.
12, Article 15.
DOI: 10.13652/j.issn.1003-5788.2018.12.015
Available at:
https://www.ifoodmm.cn/journal/vol34/iss12/15
References
[1] BIRKIN P R, LEIGHTON T G, POWER J F, et al. Experimental and theoretical characterization of sonochemical cells Part 1: cylindrical reactors and their use to calculate the speed of sound in aqueous solutions[J]. Journal of Physical Chemistry A, 2003, 107(2): 306-320.
[2] 甘露华, 张晓东, 丁艳红. 大尺寸圆锥形超声变幅杆谐振频率的瑞利修正[J]. 中国农机化学报, 2015, 36(1): 98-101.
[3] 杨超华. 大直径超声变幅杆端面振幅的分布与影响因素[J]. 噪声与振动控制, 2008(3): 49-51.
[4] 张宁宁. 大截面复合超声变幅杆振动特性研究[J]. 机械制造, 2015, 53(1): 41-43.
[5] KLMA J, FRIAS-FERRER A, GONZLEZ-GARCA J, et al. Optimisation of 20 kHz sonoreactor geometry on the basis of numerical simulation of local ultrasonic intensity and qualitative comparison with experimental results[J]. Ultrasonics-Sonochemistry, 2006, 14(1): 19-28.
[6] WANG Yi-chun, YAO Ming-chung. Realization of cavitation fields based on the acoustic resonance modes in an immersion-type sonochemical reactor[J]. Ultrasonics-Sonochemistry, 2013, 20(1): 565-570.
[7] 白申兰. 声在大气中的传播、折射和吸收特性[J]. 物理通报, 1995(8): 35-37.
[8] CAMPOS L M B C, 籍顺心, 刘良兵, 等. 位势流动和非均匀介质中声波方程的36种形式[J]. 力学进展, 2009, 39(5): 598-627.
[9] 刘丽艳, 刘芃宏, 杨洋, 等. 超声频率和液位对空化场的影响[J]. 天津大学学报: 自然科学与工程技术版, 2016, 49(8): 802-808.
[10] 付丽媛. 声通道上的条状障碍物对HIFU声场和生物学焦域的影响研究[D]. 重庆: 重庆医科大学, 2009: 22-27.
[11] 赵小策, 杨平, 祝海江. 光纤水听器测量聚焦换能器声压和温度分布[J]. 北京化工大学学报: 自然科学版, 2016, 43(5): 84-88.
[12] 杜江齐, 张树生, 卢瑞祥. 水听器法的医用超声声场参数测量不确定度分析[J]. 中国计量学院学报, 2012, 23(3): 264-267, 10.
[13] 卢斌. 超声波换能器谐振频率跟踪方法研究[D]. 重庆: 重庆大学, 2012: 21-33.