Abstract
Jiash melon and 86-1 melon were used as experiment material in this paper. After inoculated with Alternaria alternata by injury, the differences between the two were compared in terms of lesion diameter, pathogen-induced plant protein and protective enzyme activity. The results showed that the lesions of Jiashi melon were less than 86-1, and the diameter of the pericarp was smaller than the sarcocarp. After inoculated with Alternaria alternata, pathogen-induced plant protein and protective enzyme activity of two melons were increased during whole storage period. It played an important role in resisting the infection of Alternaria alternata, especially in the middle and late stages of infection. The activity of inoculated pericarp and sarcocarp in Jiashi melon was higher than 86-1 melon.
Publication Date
12-28-2018
First Page
135
Last Page
140
DOI
10.13652/j.issn.1003-5788.2018.12.028
Recommended Citation
Paerhati, MAERHABA; Yujia, BAI; Jin, WANG; Wantong, ZHU; Tuersun, ADILAI; and Zuoshan, FENG
(2018)
"Infection of Alternaria alternata in postharvest Jiashi melon and 86-1 melon,"
Food and Machinery: Vol. 34:
Iss.
12, Article 28.
DOI: 10.13652/j.issn.1003-5788.2018.12.028
Available at:
https://www.ifoodmm.cn/journal/vol34/iss12/28
References
[1] 杨渡. 浅谈新疆甜瓜产业发展[J]. 新疆农业科学, 2002, 39(1):1-5.
[2] 张新慧. 哈密瓜产业发展中存在的问题及对策措施[J]. 新疆农业科技, 2002(z1): 63.
[3] 林德佩. 新疆野生甜瓜的研究[J]. 新疆农业大学学报, 1984(1): 6.
[4] 陈存坤, 王文生, 高元惠, 等. 新疆厚皮甜瓜采后病害及主要病原真菌的分离与鉴定[J]. 保鲜与加工, 2008, 8(6): 54-56.
[5] 叶彩玲, 丁胜利. 新疆甜瓜上的几种主要病害及其防治[J]. 植物保护, 2001, 27(5): 34-35.
[6] 新疆维吾尔自治区统计局. 2017年新疆统计年鉴[Z]. 北京: 中国统计出版社, 2017: 354-357.
[7] PAVONCELLO D, LURIE S, DROBY S, et al. A hot water treatment induces resistance to Penicillium digitatum and promotes the accumulation of heat shock and pathogenesis-related proteins in grapefruit flavedo[J]. Physiologia Plantarum, 2001, 111(1): 17-22.
[8] SELS J, MATHYS J, CONINCK B, et al. Plant pathogenesisrelated (PR) proteins: a focus on PR peptides[J]. Plant Physiology and Biochemistry, 2008, 46(11): 941-950.
[9] WARD E R, PAYNE G B, MOYER M B, et al. Differential regulation of β-1,3-glucanase messenger RNAs in response to pathogen infection[J]. Plant Physiology, 1991, 96(2): 390-397.
[10] 王合春, 陈新利, 隋炯明, 等. 花生β-1,3-葡聚糖酶基因启动子的克隆及功能分析[J]. 植物遗传资源学报, 2013, 14(5): 864-870.
[11] 李娇. 链格孢菌侵染对芒果贮藏品质及生理的影响[D]. 福州: 福建农林大学, 2016: 29-36.
[12] KAVITA S, SAREETA N. Heat exposure alters the express-ion of SOD, POD, APX and CAT isozymes and mitigates low cadmium toxicity in seedlings of sensitive and tolerant rice cultivars[J]. Plant Physiology and Biochemistry, 2012, 57: 106-113.
[13] 李纪顺, 陈凯, 李玲, 等. 木霉融合子Tpf-2的定殖及其对番茄防御酶系的影响[J]. 植物保护, 2018, 44(4): 65-69, 91.
[14] CHEN Fang, WANG Min, ZHENG Yu, et al. Quantitative changes of plant defense enzymes and phytohormone in biocontrol of cucumber Fusarium wilt by Bacillus subtilis B579[J]. World Journal of Microbiology & Biotechnology, 2010, 26(4): 675-684.
[15] 白羽嘉, 张培岭, 黄伟, 等. 链格孢菌侵染采后甜瓜果实组织几丁质酶和β-1,3-葡聚糖酶基因表达分析[J]. 食品科学, 2018, 39(2): 185-191.
[16] 葛永红, 毕阳, 杨冬梅. 诱抗剂处理对“银帝”甜瓜采后粉霉病和黑斑病的抑制效果[J]. 食品科学, 2006, 27(1): 246-249.
[17] 刘芳芳, 李范洙, 张先, 等. 生物质热解液对甜瓜炭疽菌的抑菌及保鲜作用[J]. 食品与机械, 2018, 34(5): 123-127, 147.
[18] 曹建康, 姜微波, 赵玉梅. 果蔬采后生理生化实验指导[M]. 北京: 中国轻工业出版社, 2007: 139-145.
[19] NAKANO Y, ASADA K. Hydrogen peroxide is scavenged by ascobate specific peroxidase in spinach chl-oroplasts[J]. Plant Cell Physiology, 1981, 22(5): 867-880.
[20] BEAUCHAMP C, FRIDOVICH I. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels[J]. Analytical Biochemistry, 1971, 44(1): 276-287.
[21] ZAUBERMAN G, RONEN R, AKERMAN M, et al. Post-harvest retention of the red colour of litchi fruit pericarp[J]. Scientia Horticulturae, 1991, 47(1/2): 89-97.
[22] 蒋黎艳, 龚蕾, 盖智星, 等. 人工接种温州蜜柑后链格孢霉毒素的产生及分布规律[J]. 食品科学, 2017, 38(8): 251-257.
[23] 张培岭, 黄伟, 马玲, 等. 链格孢侵染对甜瓜病程相关蛋白活性及基因表达的影响[J]. 食品工业科技, 2017, 38(18): 290-294.
[24] 刘丽, 马永毅, 张志明, 等. 玉米不同防卫酶系对纹枯病作用的研究[J]. 玉米科学, 2009, 17(3): 99-102.
[25] SHEWRY P R, LUCAS J A. Plant proteins that confer resistance to pests and pathogens[J]. Journal of Experimental Botany, 1997, 26(238): 135-170.
[26] 单春会. 哈密瓜响应青霉菌侵染的转录组和蛋白组研究及相关抗性酶变化分析[D]. 无锡: 江南大学, 2015: 107-111.
[27] WESSELS J G H, SIETSMA J H. Fungal cell walls: a survey[M]. New York: Plant Carbohydrates II, 1981: 352-394.
[28] 柴喜荣, 林洁, 杨暹, 等. 黄瓜品种抗疫病鉴定及其防御相关酶系研究[J]. 广东农业科学 2018, 459(7): 16-21.
[29] 李超兰, 杨其亚, 张红印, 等. 活性氧影响拮抗菌及果蔬采后抗病性的研究进展[J]. 食品科学, 2014, 35(21): 264-269.
[30] 张晓慧. 一种吡唑并嘧啶衍生物对黄瓜枯萎病的诱导抗病表达及抗病机理初探[D]. 北京: 中国农业科学院, 2018: 32-38.
[31] 王馨, 胡文忠, 陈晨, 等. 活性氧在果蔬采后成熟衰老过程中的作用及几种气体处理对其影响的研究进展[J]. 食品工业科技, 2017, 38(5): 375-379.
[32] 王玲杰. 柑橘褐斑病菌毒素提取、产毒特性及对寄主防御酶的影响[D]. 重庆: 西南大学, 2015: 39-47.
[33] 周琦, 陈季旺, 高俊, 等. 鲜切雷竹笋冷藏过程中木质化机理的研究[J]. 食品科学, 2012, 33(14): 307-311.
[34] 黄晓杰, 李婧, 柴媛, 等. MeJA处理对蓝莓果实采后灰霉病的影响及机理[J]. 食品科学, 2016, 37(22): 307-312.
[35] 李丽, 何雪梅, 李昌宝, 等. 炭疽病菌侵染对香蕉采后品质变化及抗病相关酶活性的影响[J]. 现代食品科技, 2017(9): 83-90.
[36] WOJTASZEK P. Oxidative burst: an early plant response to pathogen infection[J]. Biochemical Journal, 1997, 322(3): 681-692.
[37] 唐永萍. 不同品种苹果采后对灰霉病抗性差异研究[D]. 榆林: 西北农林科技大学: 2017: 3-21.