•  
  •  
 

Abstract

In this paper, on account of the current situation that some rice have high cadmium content or even exceeds the national standard, the severity and regional distribution currently at home and abroad are analyzed. The necessity of controlling cadmium pollution of rice was revealed, and the methods of biotechnology and farming at home and abroad were systematically integrated,such as screening low cadmium enriched rice varieties using biological technology, hybrid technology and genetic engineering technology that includes transgene technology, gene knockout and gene silencing to improve rice traits. The microbial adsorption method and fermentation technology to reduce the cadmium content in rice, and employing farming technology that adding different fertilizer to reduce soil cadmium content were also disscussed. All theses methods provide effective ways to control rice cadmium pollution.

Publication Date

12-28-2018

First Page

172

Last Page

175,210

DOI

10.13652/j.issn.1003-5788.2018.12.034

References

[1] GODT J, SCHEIDIG F, GROSSE-SIESTRUP C, et al. The toxicity of cadmium and resulting hazards for human health[J]. Journal of Occupational Medicine and Toxicology, 2006, 1: 22-27.
[2] SATARUG S, BAKER J R, URBENJAPOL S, et al. A global perspective on cadmium pollution and toxicity in non-occupationally exposed population[J]. Toxicology Letters, 2003, 137(1/2): 65-83.
[3] FAROON O, ASHIZAWA A, WRIGHT S, et al. Toxicological Profile for Cadmium[M]. Atlanta: Agency for Toxic Substances and Disease Registry, 2012: 15.
[4] 国家环境保护总局. 中东部地区生态环境现状调查报告[J]. 环境保护, 2003, 26(8): 3-8.
[5] 张红振, 骆永明, 章海波, 等. 土壤环境质量指导值与标准研究Ⅴ: 镉在土壤—作物系统中的富集规律与农产品质量安全[J]. 土壤学报, 2010, 47(4): 628-638.
[6] XIE Li-hong, Tang Shao-qing, WEI Xiang-jin, et al. The cadmium and lead content of the grain produced by leading Chinese rice cultivars[J]. Food Chemistry, 2017, 217: 217-224.
[7] GRANT C A, CLARKE J M, DUGUID S, et al. Selection and breeding of plant cultivars to minimize cadmium accumulation[J]. Sci Total Environ, 2008, 390(2/3): 301-310.
[8] URAGUCHI S, FUJIWARA T. Cadmium transport and tolerance in rice: perspectives for reducing grain cadmium accumulation[J]. Rice, 2012, 5(1): 1-8.
[9] YANG Qian-wen, LAN Chong-yu, WANG Hong-bin, et al. Cadmium in soil-rice system and health risk associated with the use of untreated mining wastewater for irrigation in Lechang, China[J]. Agricutral Water Management, 2006, 84(1/2): 147-152.
[10] GRANT C A, CLARKE J M, DUGUID S, et al. Selection and breeding of plant cultivars to minimize cadmium accumulation[J]. Sci Total Environ, 2008, 390: 301-310.
[11] KE Shen, CHENG Xi-yu, ZHANG Ni, et al. Cadmium contamination of rice from various polluted areas of china and its potential risks to human health[J]. Environ Monit Asses, 2015, 187: 1-11.
[12] ZHAN Jie, WEI Shu-he, NIU Rong-cheng, et al. Identification of rice cultivar with exclusive characteristic to Cd using a field polluted soil and its foreground application[J]. Environ Sci Pollut Res, 2013, 20: 2 645-2 650.
[13] HUANG Gao-xiang, DING Chang-feng, GUO Fu-yu, et al. The Role of node restriction on cadmium accumulation in the brown rice of 12 Chinese rice (Oryza sativa L.) cultivars[J]. Journal of Agricultural and Food Chemistry, 2017, 65(47): 10 157-10 164.
[14] BANAKAR R, ALVAREZ Fernandez A, DAZ-BENITO P, et al. Phytosiderophores determine thresholds for iron and zinc accumulation in biofortified rice endosperm while inhibiting the accumulation of cadmium[J]. Journal of Experimental Botany, 2017, 68(17): 4 983-4 995.
[15] LEE K, BACK K. Overexpression of rice serotonin N-acetyltransferase1 in transgenic rice plants confers resistance to cadmium and senescence and increases grain yield[J]. Journal of Pineal Research, 2017, 62(3): e12392.
[16] 宗锦涛. 低镉杂交水稻选育取得突破性进展[J]. 湖南农业科学, 2017(9): 27.
[17] 周维, 付喜爱, 张德显, 等. 基因敲除技术的进展[J]. 中国兽医, 2015, 51(3): 67-69.
[18] SASAKI A, YAMAJI N, YOKOSHO K, et al. Nramp5 is a major transporter responsible for manganese and cadmium uptake in rice[J]. Plant Cell, 2012, 24(5): 2 155-2 167.
[19] TANG Li, MAO Bi-gang, LI Yao-kui, et al. Knockout of OsNramp5 using the CRISPR/Cas9 system produces low Cd-accumulating indica rice without compromising yield[J]. Scientific Reports, 2017, 7(1): 14 438.
[20] 刘培楠, 吴国利. 基础分子生物学[M]. 北京: 高等教育出版社, 1983: 169.
[21] URAGUCHI S, KAMIYA T, SAKAMOTO T, et al. Low-affinity cation transporter (OsLCT1) regulates cadmium transport into rice grains[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(52): 20 959-20 964.
[22] 曹霞. 耐铅镉微生物的筛选及其对污染土壤铅镉化学形态的影响[D]. 武汉: 华中农业大学, 2009: 1-3.
[23] 刘也嘉, 林亲录, 肖冬梅, 等. 大米乳酸菌发酵降镉工艺优化[J]. 农业工程学报, 2016, 34(7): 276-282.
[24] 陈瑶, 廖卢艳, 吴卫国. 混菌发酵消减大米中镉的工艺优化[J]. 食品与机械, 2017, 33(8): 44-49.
[25] 王年忠. 镉超标大米酒精发酵技术的研究[J]. 轻工科技, 2014, 30(6): 27-28.
[26] 李春生, 徐莹, 姜维, 等. 对镉高抗性及吸附性的鲁氏酵母突变株的选育[J]. 食品与发酵工业, 2011, 37(12): 49-53.
[27] DENYES M J, PARISIEN M A, RUTTER A, et al. Physical, chemical and biological characterization of six biochars produced for the remediation of contaminated sites[J]. Journal of Visualized experimental, 2014, 93: e52183-e52194.
[28] AHMAD M, RAJAPAKSHA A U, LIM J E, et al. Biochar as a sorbent forcontaminant management in soil and water: a review[J]. Chemosphere, 2014, 99(3): 19-23.
[29] UCHIMIYA M, LIMA I M, KLASSON K T, et al. Immobilization of heavy metal ions (CuII, CdII, NiII, and PbII) by broiler litter derived biochars in water and soil[J]. Journal of Agricultural and Food Chemistry, 2010, 58(9): 5 538-5 544.
[30] LIU Pei, LIU Wu-jun, JIANG Hong, et al. Modification of bio-char derived from fast pyrolysis of biomass and its application in removal of tetracycline from aqueous solution[J]. Bioresoure Techno1ogy, 2012, 121: 235-240.
[31] BASHIR S, ZHU Jun, FU Qing-ling, et al. Comparing the adsorption mechanism of Cd by rice straw pristine and KOH-modified biochar[J]. Environmental Science and Pollution Research, 2018, doi: 10. 1007/s11356-018-1292-z.
[32] RAJAPAKSHA A U, CHEN Season-sheng, TSANG D C W, et al. Engineered/designer biochar for contaminant removal/immobilization from soil and water: potential and implication of biochar modification[J]. Chemosphere, 2016, 148: 276-291.
[33] TAN Xiao-fei, LIU Yun-guo, GU Yan-lin, et al. Biochar-based nano-composites for the decontamination of wastewater: a review[J]. Bioresource Technology, 2016, 212: 318-333.
[34] ARABYARMOHAMMADI H, DARBAN A K, ZEE Seatm van der, et al. Fractionation and leaching of heavy metals in soils amended with a new biochar nanocomposite[J]. Environmental Science and Pollution Research International, 2018, 25(7): 6 826-6 837.
[35] 彭华, 田发祥, 魏维, 等. 不同生育期施用硅肥对水稻吸收积累镉硅的影响[J]. 农业环境科学学报, 2017, 36(6): 1 027-1 033.
[36] 王怡璇, 刘杰, 唐云舒, 等. 硅对水稻镉转运的抑制效应研究[J]. 生态环境学报, 2016, 25(11): 1 822-1 827.
[37] MENG Jun, ZHONG Li-bin, WANG Lu, et al. Contrasting effects of alkaline amendments on the bioavailability and uptake of Cd in rice plants in a Cd-contaminated acid paddy soil[J]. Environmental Science and Pollution Research International, 2018, 25(9): 8 827-8 835.
[38] HUANG Gao-xiang, DING Chang-feng, GUO Fu-yu, et al. Underlying mechanisms and effects of hydrated lime and selenium application on cadmium uptake by rice (Oryza sativa L.) seedlings[J]. Environmental Science and Pollution Research, 2017, 24(23): 18 926-18 935.
[39] HE Yan-bing, HUANG Dao-you, ZHU Qi-hong, et al. A three-season field study on the in-situ remediation of Cd-contaminated paddy soil using lime, two industrial by-products, and a low-Cd-accumulation rice cultivar[J]. Ecotoxicology and Environment Safety, 2017, 136: 135-141.
[40] 史磊, 郭朝晖, 梁芳, 等. 水分管理和施用石灰对水稻镉吸收与运移的影响[J]. 农业工程学报, 2017, 33(24): 111-117.
[41] 叶欣怡, 赵杏, 王小鹏, 等. 土壤亚铁、镉对水稻 2 种抗氧化酶和植株富集镉量的影响[J]. 浙江大学学报: 农业与生命科学版, 2016, 42(1): 89-98.
[42] LIN Jia-jiang, SU Bin-lin, SUN Meng-qiang, et al. Biosynthesized iron oxide nanoparticles used for optimized removal of cadmium with response surface methodology[J]. The Science of Total Environment, 2018, 627(1): 314-321.
[43] 周歆, 周航, 曾敏, 等. 石灰石和海泡石组配对水稻糙米重金属积累的影响[J]. 土壤学报, 2014(3): 555-563.
[44] 谢运河, 纪雄辉, 吴家梅, 等. 不同有机肥对土壤镉锌生物有效性的影响[J]. 应用生态学报, 2015, 26(3): 826-832.
[45] HUANG Bai-fei, XIN Jun-liang, DAI Hong-wen, et al. Effects of interaction between cadmium (Cd) and selenium (Se) on grain yield and Cd and Se accumulation in a hybrid rice (Oryza sativa) system[J]. Journal of Agricultural and Food Chemistry, 2017, 65(43): 9 537-9 546.
[46] 袁知洋, 项剑桥, 吴冬妹, 等. 恩施富硒土壤区主要农作物硒镉特征以及和根系土硒镉关系研究[J]. 资源环境与工程, 2017, 31(6): 706-712.
[47] 梁程, 林匡飞, 张雯, 等. 不同浓度硫处理下硒镉交互胁迫对水稻幼苗的生理特性影响[J]. 农业环境科学学报, 2012, 31(5): 857-866.
[48] 庞晓辰, 王辉, 吴泽嬴, 等. 硒对水稻镉毒性的影响及其机制的研究[J]. 农业环境科学学报, 2014, 33(9): 1 679-1 685.
[49] 李虹颖, 唐杉, 王允青, 等. 硒对水稻镉含量及其在亚细胞中的分布的影响[J]. 生态环境学, 2016, 25(2): 320-326.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.