Abstract
To decrease the waste of energy and resource during the traditional debitterizing processing of apricot seeds, a rapid and novel method was proposed based on the principle of ultrasound-induced in this paper. Firstly, the parameters affecting the dissolution rate of amygdalin such as ultrasonic temperature, time, frequency, power and ratio of material to liquid, were tested by the method of single-factor experiment. Secondly, three parameters affecting the amygdalin dissolution rate were optimized by the response surface methodology, such as ultrasonic temperature, power and frequency, resepectively. The results showed that the optimum conditions were ultrasonic temperature 55 ℃, ultrasonic power 300 W, and frequency 59 kHz. Under the above optimal parameters, when the ultrasonic time was 60 min and ratio of material to liquid was 1∶12 (g/mL), the practical dissolution rate of amygdalin was 63.17%, and the relative error between the predicted values of the secondary models was only 0.52%, indicating that this model can simulate the actual dissolution of amygdalin.
Publication Date
12-28-2018
First Page
189
Last Page
194
DOI
10.13652/j.issn.1003-5788.2018.12.038
Recommended Citation
Ning, ZHANG; Xinyun, ZHANG; Xuehui, FAN; and Qingan, ZHANG
(2018)
"Optimization on fast debitterizing technologies of apricot seed by ultrasound with response surface methodology,"
Food and Machinery: Vol. 34:
Iss.
12, Article 38.
DOI: 10.13652/j.issn.1003-5788.2018.12.038
Available at:
https://www.ifoodmm.cn/journal/vol34/iss12/38
References
[1] BOLARINWA I F, ORFILA C, MORGAN M R. Determination ofamygdalin in apple seeds, fresh apples and processed apple juices[J]. Food Chemistry, 2015, 170: 437-442.
[2] SAHIN S. Cyanide poisoning in children caused by apricot seeds[J]. Journal of Health & Medical Informatics, 2011, 2: 106.
[3] 史清华. 苦杏仁的快速脱苦方法[J]. 陕西农业科学, 1997(2): 46-46.
[4] 赵振甲, 马文锦, 彭涛, 等. 提高杏仁露产品蛋白含量及改善产品风味工艺的研究[J]. 食品科技, 2010, 35(17): 66-69.
[5] ABRAHAM K, BUHRKE T, LAMPEN A. Bioavailability of cyanide after consumption of a single meal of foods containing high levels ofcyanogenic glycosides: a crossover study in humans[J]. Archives of Toxicology, 2016, 90(3): 559-574.
[6] 张乔会, 李军, 逄锦慧, 等. 响应面法优化山杏仁脱苦工艺的研究[J]. 食品工业科技, 2014, 35(21): 248-253.
[7] 朱海兰, 史清华, 唐德瑞. 苦杏仁脱皮去毒方法的研究[J]. 陕西林业科技, 2002(4): 4-6.
[8] 张兵, 田兴旺, 王永平. 苦杏仁的微波脱苦法[J]. 陇东学院学报, 2003, 13(2): 39-40.
[9] 柴广建, 张清安, 卫晨曦. 一种苦杏仁绿色去皮方法: 中国, CN 106538933 A[P]. 2017-03-29.
[10] 胡爱军, 郑捷. 食品工业中的超声提取技术[J]. 食品与机械, 2004, 20(4): 57-60.
[11] ZHANG Qing-an, WANG Ting-ting. Effect of ultrasound irradiation on the evolution of color properties and major phenolic compounds in wine during storage[J]. Food Chemistry, 2017, 234: 372-380.
[12] 罗登林, 丘泰球, 卢群. 超声波技术及应用(Ⅱ): 声化学技术在日化工业中的应用[J]. 日用化学工业, 2005, 35(6): 393-395.
[13] 王晓, 孙靖中. 高能聚焦超声对恶性肿瘤细胞免疫功能的影响[J]. 中国超声医学, 2002, 18(7): 555-557.
[14] CHAUSSY C, THROFF S. Results and side effects of high-intensity focused ultrasound in localized prostate cancer[J]. Journal of Endourology, 2001, 15(4): 437-440.
[15] 向英, 丘泰球. 低频超声催陈豉香型白酒的研究[J]. 食品与发酵工业, 2005, 31(11): 75-77.
[16] 林晓姿, 李维新, 梁璋成, 等. 枇杷果醋的超声波催陈技术研究[J]. 中国调味品, 2009, 34(10): 43-46.
[17] 吕真真, 焦中高, 刘杰超, 等. 响应面试验优化苦杏仁粕中苦杏仁苷提取工艺及其高效离心分配色谱纯化[J]. 食品科学, 2016, 37(24): 74-80.
[18] 谢朝晖, 李鑫, 李文博, 等. 超声波法提取山杏仁中苦杏仁苷的单因素试验研究[J]. 河南城建学院学报, 2012, 21(2): 31-38.
[19] 张清安, 范学辉, 张扬俊娜, 等. 一种超声诱导苦杏仁快速脱苦的方法: 中国, ZL 201310376132.X[P]. 2016-02-03.
[20] KOO J Y, HWANG E Y, CHO S, et al. Quantitative determination of amygdalin epimers from armeniacae semen by liquid chromatography[J]. Journal of Chromatography B, Analytical Technologies in the Biomedical & Life Sciences, 2005, 814(1): 69-73.
[21] PRASAD K N, YANG En, YI Chun, et al. Effects of high pressure extraction on the extraction yield, total phenolic content and antioxidant activity of longan fruit pericarp[J]. Innovative Food Science & Emerging Technologies, 2009, 10(2): 155-159.
[22] 吕秉森. 中药苦杏仁炮制质量的探讨[J]. 上海中医药杂志, 1980(6): 38-39.
[23] 冯年平, 郁威. 中药提取分离技术原理与应用[M]. 北京: 中国医药科技出版, 2005: 4-12.
[24] ZHANG Qing-an, SHEN Hui, FAN Xue-hui, et al. Changes of gallic acid mediated by ultrasound in a model extraction solution[J]. Ultrasonics Sonochemistry, 2015(22): 149-154.
[25] 宋曰钦, 叶双峰, 王建中. 超声处理对提取苦杏仁挥发油的研究[J]. 资源开发与市场, 2007, 23(11): 961-963.
[26] 谢为峰, 罗丰收, 解超男, 等. 超声波处理对杏仁粕蛋白质理化和功能性质的改性研究[J]. 农产品加工, 2016, 9(17): 1-3.
[27] 郭孝武. 用电导率法研究低频超声提取小檗碱成分的产额[J]. 天然产物研究与开发, 2001, 13(5): 57-59.