Abstract
The changes of amino acid and other related indexes in chicken soups which were concentrated under atmospheric pressure and vacuum were studied. The results were as follows: with the increase of concentration ratio, the contents of crude protein, oligopeptide and reducing sugar in chicken soups were gradually reduced. Under the same concentration ratio, the crude protein content in atmospheric concentration chicken soups was higher than that in vacuum concentration chicken soups (P<0.05), while the oligopeptide content in vacuum concentration chicken soups and the reducing sugar in chicken soups with concentration ratio greater than 1∶2 were higher than that in atmospheric concentration chicken soups (P<0.05). The content of total free amino acids in chicken soups, both concentrated under atmospheric pressure and vacuum, increased first and then decreased with the increase of the concentration ratio (P<0.05). When the concentration ratio up to 1∶2 under atmospheric pressure and 1∶3 under vacuo, the content of the free amino acids was highest. With regard to the same concentration ratio, the content of total free amino acids in atmospheric concentration chicken soup was significantly higher than that in vacuum concentration one (P<0.05). Therefore, the conditions and proportion of evaporation and concentration had a great impact on the change of free amino acids in chicken soup, which in turn affected its flavor quality.
Publication Date
12-28-2018
First Page
22
Last Page
26,107
DOI
10.13652/j.issn.1003-5788.2018.12.004
Recommended Citation
Jia, WU; Yangyi, XIA; Mengxi, YAN; and Guoxing, ZHANG
(2018)
"Effects of atmospheric and vacuum concentrationon free amino acids of chicken soup,"
Food and Machinery: Vol. 34:
Iss.
12, Article 4.
DOI: 10.13652/j.issn.1003-5788.2018.12.004
Available at:
https://www.ifoodmm.cn/journal/vol34/iss12/4
References
[1] 张小强, 田亚东, 康相涛, 等. 固始鸡汤主要营养成分分析[J]. 食品工业科技, 2008(1): 268-270.
[2] KONG Yan, YANG Xiao, DING Qi, et al. Comparison of non-volatile umami components in chicken soup and chicken enzymatic hydrolysate[J]. Food Research International, 2017, 102(10): 559-566.
[3] HOU Bai-hui, ZHANG Wei-yue, XIA Yang-yi, et al. Effect of different freezing rates on the quality of chicken soup[J]. Food & Fermentation Industries, 2018, 44(2): 81-86
[4] 周玮婧, 孙智达. 鸡汤的营养成分及食疗功能研究进展[J]. 食品科技, 2008(9): 261-264.
[5] 陈宇丹, 芮汉明, 张立彦. 鸡的品种对鸡汤质量的影响研究[J]. 现代食品科技, 2010, 26(11): 1 212-1 216.
[6] ZHANG Yan, XIA Yang-yi, HE Cui, et al. Principal component analysis of volatile compounds in chicken soup based on the gender of broiler[J]. Food & Machinery, 2016(7): 23-28.
[7] 刘嘉玲. 蛹虫草鸡汤工艺优化及其风味研究[D]. 广州: 仲恺农业工程学院, 2017: 10-12.
[8] 贺习耀, 王婵. 加热方式对鸡汤风味品质影响的研究[J]. 食品科技, 2013, 38(10): 77-82.
[9] PEREZPALACIOS T, EUSEBIO J, PALMA S F, et al. Taste compounds and consumer acceptance of chicken soups as affected by cooking conditions[J]. International Journal of Food Properties, 2017, 20(19): 154-165.
[10] DU Hua-ying, YE Hui, GAO Guo-qing, et al. Effect of different cooking methods on the quality of chicken soup[J]. Meat Research, 2013, 27(7): 26-29.
[11] 张亮子, 荣建华, 胡坚, 等. 前处理对鸡汤体系营养特性的影响[J]. 食品科学, 2009, 30(23): 83-87.
[13] 吕东坡, 朱仁俊, 李从军. 新工艺对农夫鸡汤保质期的研究[J]. 肉类工业, 2009(3): 14-17.
[14] 杨玉宝. 两种工艺对鸡汤保质期的研究[J]. 肉类工业, 2012(7): 27-30.
[15] 余力, 贺稚非, 李洪军, 等. 不同贮藏方式对高压鸡汤品质的影响及货架期预测模型的建立[J]. 食品科学, 2016, 37(20): 274-281.
[16] 刘超楠. 不同加工工艺对淘汰蛋鸡浓缩汤品质影响的研究[D]. 雅安: 四川农业大学, 2014: 32-35.
[17] 张颖, 杨勇, 郭艳婧, 等. 两种不同浓缩工艺对保健鸡汤挥发性风味物质的影响[J]. 食品工业科技, 2015, 36(8): 103-107.
[18] 郭晨璐, 马龙, 武杰, 等. 浓缩液态食品流变特性研究进展[J]. 广州化工, 2013(22): 8-9.
[19] CHAWLA H M, SAHU S N. Effect of spice essential oils on Maillard browning model reaction of glucose and glycine: An UV-visible and reverse phase HPLC analysis[J]. Journal of Food Science and Technology-mysore, 2007, 44(6): 602-606.
[20] 郑晓杰, 林胜利, 聂小华, 等. 温度对鸡骨酶解液美拉德反应产物光谱特性和挥发性风味成分的影响[J]. 食品与发酵工业, 2015, 41(8): 127-132.
[21] 王静. 枣浓缩清汁加工工艺研究[D]. 郑州: 河南工业大学, 2016: 61-62.
[22] RIZZI G P. Heat-induced flavor formation from peptides[J]. Acs Symposium Series, 1989(409): 172-181.
[23] 赵谋明, 曾晓房, 崔春, 等. 不同鸡肉蛋白肽在Maillard反应中的降解趋势研究[J]. 食品工业科技, 2007(2): 92-95.
[24] VAN BOEKEL M A. Formation of flavour compounds in the Maillard reaction[J]. Biotechnology Advances, 2006, 24(2): 230-233.
[25] 孟岳成, 何珊珊, 李延华, 等. 不同加热条件下牛乳美拉德反应程度的研究[J]. 现代食品科技, 2015, 31(1): 158-165.
[26] RANNOU C, LAROQUE D, RENAULT E, et al. Mitigation strategies of acrylamide, furans, heterocyclic amines and browning during the Maillard reaction in foods[J]. Food Research International, 2016, 90: 154-176.
[27] 周涛. 热反应鸡汤呈味物质变化研究[D]. 重庆: 西南大学, 2016: 30-31.
[28] 张艳. 冻结速率对鸡汤品质特性的影响研究[D]. 重庆: 西南大学, 2017: 48-49.
[29] MOTTRAM D S. Flavour formation in meat and meat products: a review[J]. Food Chemistry, 1998, 62(4): 415-424.
[30] WERKHOFF P, BRUENING J, EMBERGER R, et al. Isolation and characterization of volatile sulfur-containing meat flavor componentsinmodel systems[J]. Journal of Agricultural and Food Chemistry, 1990, 38(3): 777-791.
[31] TAO Hong, LIANG Qi, ZHANG Ming-di. Effect of heat treatment on hydrolysis degree of soybean protein[J]. China Oils & Fats, 2003, 28(9): 61-63.
[32] 杜正萱. 化学反应与动态平衡移动原理[J]. 内蒙师院学报: 自然科学汉文版, 1964(00): 45-50.
[33] LIN Jau-tien, LIU Shih-chun C, HU Chao-chin, et al. Effects of roasting temperature and duration on fatty acid composition, phenolic composition, Maillard reaction degree and antioxidant attribute of almond (Prunus dulcis) kernel[J]. Food Chemistry, 2016, 190(1): 520-528.