Abstract
The inductively coupled plasma mass spectrometry (ICP-MS) combined with microwave digestion was employed in this study for the determination of forty five elements in Yingde black tea. The results showed that 45 elements had good linearity and correlation coefficients all greater than 0.999 5. The limits of detection (LODs) were ranged from 0.000 1 to 20.090 0 μg/L. The recovery rates were between 82.58% and 119.19% with the relative standard deviations (RSDs) of 0.20%~7.03%. The RSD of all the elements except Sb was 0.15%~9.14% in precision experiments. The method was validated by standard reference material (GBW10083), the determination values of elements other than Cd are all within the standard value range. It showed that the method had the advantages of rapidness, simplicity and accuracy, which met the requirements of sample determination in terms of linearity, detection limit, precision, accuracy and recovery rate.
Publication Date
2-28-2018
First Page
62
Last Page
66,96
DOI
10.13652/j.issn.1003-5788.2018.02.014
Recommended Citation
Xiancai, ZHANG; Chunhua, ZHANG; Xiaolan, HUANG; and Huiqin, WU
(2018)
"Determination of 45 elements in Yingde black tea by ICP-MS,"
Food and Machinery: Vol. 34:
Iss.
2, Article 14.
DOI: 10.13652/j.issn.1003-5788.2018.02.014
Available at:
https://www.ifoodmm.cn/journal/vol34/iss2/14
References
[1] YANG Jun, LIU Rui-hai. The phenolic profiles and antioxidant activity in different types of tea[J]. International Journal of Food Science and Technology, 2013, 48(1): 163-171.
[2] YAO L H, JIANG Y M, CAFFIN N, et al. Phenolic compounds in tea from Australian supermarkets[J]. Food Chemistry, 2006, 96(4): 614-620.
[3] KHAN N, MUKHTAR H. Tea polyphenols for health promo-tion[J]. Life Sciences, 2007, 81(7): 519-533.
[4] MCKAY D L, BLUMBERG J B. The role of tea in human health: an update[J]. Journal of the American College of Nutrition, 2002, 21(1): 1-13.
[5] BUTT M S, SULTAN M T. Green tea: nature's defense against malignancies[J]. Critical Reviews in Food Science and Nutrition, 2009, 49(5): 463-473.
[6] PILGRIM T S, WATLING R J, GRICE K, et al. Application of trace element and stable isotope signatures to determine the provenance of tea (Camellia sinensis) samples[J]. Food Chemistry, 2010, 118(4): 921-926.
[7] ZHAO Hai-yan, ZHANG Shuang-ling, ZHANG Zhi-wei. Relationship between multi-element composition in tea leaves and in provenance soils for geographical traceability[J]. Food Control, 2017, 76: 82-87.
[8] 王洁, 伊晓云, 倪康, 等. 基于稀土元素指纹的扁形茶产地判别分析[J]. 浙江农业科学, 2016, 57(7): 1 118-1 124.
[9] PENG Chuan-yi, ZHU Xiao-hui, XI Jun-jun, et al. Macro-and micro-elements in tea (Camellia sinensis) leaves from anhui province in China with ICP-MS Technique: Levels and bioconcentration[J]. Spectroscopy and Spectral Analysis, 2017, 37: 1 980-1 986.
[10] ZHOU Zhou, GUO Jun-fang, DUAN Tai-cheng, et al. Fast determination of rare earth elements in tea samples by ICP-MS with modified oxygen flask combustion[J]. Chinese Journal of Analytical Chemistry, 2016, 44: 1 359-1 364.
[11] 谭和平, 张玉兰, 高杨, 等. 微波消解-ICP-AES法测定茶叶中钾、钠、磷、硫、铁、锰、铜、锌、钙、镁方法研究[J]. 中国测试, 2012, 38(6): 34-37.
[12] 刘爱丽, 沈燕, 龚慧鸽, 等. 微波消解-ICP-AES法测定泰顺茶叶中的微量元素[J]. 食品科学, 2015, 36(24): 186-189.
[13] ZHAO Li-yan, CAO Chan-yue, CHEN Gui-tang, et al. Determination of mineral elements in two grades of three green tea varieties by ICP-AES[J]. Spectroscopy and Spectral Analysis, 2011, 31(4): 1 119-1 121.
[14] 刘坚. 微波高压消解/AAS测定茶叶中的铅、铜[J]. 热带农业工程, 2001(2): 25-25.
[15] JUNIOR J B P, DANTAS K G F. Evaluation of inorganic elements in cat's claw teas using ICP OES and GF AAS[J]. Food Chemistry, 2016, 196: 331-337.
[16] UAR G, BAKIRCIOGLU D, KURTULUS Y B. Determination of metal ions in water and tea samples by flame-AAS after preconcentration using sorghum in nature form and chemically activated[J]. Journal of Analytical Chemistry, 2014, 69(5): 420-425.
[17] 王洁, 伊晓云, 马立锋, 等. ICP-MS 和 ICP-AES 在茶叶矿质元素分析及产地溯源中的应用[J]. 茶叶学报, 2015, 56(3): 145-150.
[18] L’VOV B V. Fifty years of atomic absorption spectrometry[J]. Journal of Analytical Chemistry, 2005, 60(4): 382-392.
[19] MILLOUR S, NOL L, KADAR A, et al. Simultaneous analysis of 21 elements in foodstuffs by ICP-MS after closed-vessel microwave digestion: Method validation[J]. Journal of Food Composition & Analysis, 2011, 24(1): 111-120.
[20] 刘亚轩, 李晓静, 白金峰, 等. 植物样品中无机元素分析的样品前处理方法和测定技术[J]. 岩矿测试, 2013, 32(5): 681-693.
[21] 魏琳丰. 不同消解方法在测定样品中重金属含量的应用[J]. 河南化工, 2016, 33(3): 12-15.
[22] 沈宇, 张尼, 高小红, 等. 微波消解电感耦合等离子体质谱法测定地球化学样品中钒铬镍锗砷[J]. 岩矿测试, 2014, 33(5): 649-654.
[23] 王佩佩, 李霄, 宋伟娇, 等. 微波消解-电感耦合等离子体质谱法测定地质样品中稀土元素[J]. 分析测试学报, 2016, 35(2): 235-240.
[24] 王秋霜, 吴华玲, 陈栋, 等. 广东英德红茶代表产品的香气成分鉴定研究[J]. 茶叶科学, 2012, 32(5): 448-456.
[25] 戚康标, 郑宇晴. 英红九号红茶的品质特征及抗氧化活性研究[J]. 广东茶业, 2014(5): 15-21.
[26] ZHOU Hua, LI Hai-mei, DU Yang-min, et al. C-geranylated flavanones from YingDe black tea and their antioxidant and α-glucosidase inhibition activities[J]. Food Chemistry, 2017, 235: 227-233.
[27] 余煜棉, 黄绍铨, 李增禧, 等. 英德红茶、绿茶及其浸出液中的微量元素研究[J]. 微量元素, 1985(1): 69-73.
[28] 陈雄, 方宣启, 戴璇, 等. 微波消解/ICP-MS法测定黑茶中5种重金属元素及15种稀土元素[J]. 食品与机械, 2016, 32(8): 55-57.