Abstract
Antioxidant peptides were prepared from hairy antler grounds by high-intensity pulsed electric fields (PEF) jointed bromelain, and then they were isolated and purified. The degree of hydrolysis and scavenging rates of DPPH· was considered as test indexes. According to the results of the single factor experiment, the response surface methodology (RSM) experiment was conducted on three factors at five levels to analyze the factors and interaction effects on the scavenging rates of DPPH·. Then the macroporous resin was used to desalt, separate and purify hairy antler antioxidant peptides, and the antioxidant activities of hairy antler peptides were also analyzed. The optimal conditions of enzymatic hydrolysis are as follows:the substrate concentration 15%, bromelain concentration 7.04 U/mg, electric filed intensity 17.3 kV/cm, pulse number 7, the scavenging rates of DPPH· by hairy antler antioxidant peptides was (74.76±2.03)%. The scavenging rates of DPPH·, ·OH and O-2· of 75% ethanol elution component C3 were the highest, and the antioxidant activity of elution component C3 sharply increased compared with crude peptide, when hairy antler peptides were featured with a considerable antioxidant activity, and hairy antler could be a potential source of preparing peptide with the strong antioxidant activity.
Publication Date
3-28-2018
First Page
180
Last Page
185
DOI
10.13652/j.issn.1003-5788.2018.03.038
Recommended Citation
Wei, JIANG; Shenglang, JIN; and Yongguang, YIN
(2018)
"Process optimization for purification and preparation of hairy antler grounds antioxidant peptide assisted by high-intensity pulsed electric fields,"
Food and Machinery: Vol. 34:
Iss.
3, Article 38.
DOI: 10.13652/j.issn.1003-5788.2018.03.038
Available at:
https://www.ifoodmm.cn/journal/vol34/iss3/38
References
[1] MILIAUSKAS G, VAN-BEEK T A, VENSKUTONIS P R, et al. Antioxidant activity ofpotentilla fruticosa[J]. Journal of the Science of Food & Agriculture, 2004, 84(15): 1 997-2 009.
[2] JUNG M Y, KIM S K, KIM S Y. Riboflavin-sensitizedphotooxidation of ascorbic acid kinetics and amino acid effects[J]. Food Chemistry, 1995, 53: 397-403.
[3] JIANG Wei, YIN Yong-guang, ZHOU Ya-jun, et al. Fast hydrolysis of antler residue (Comu cervi pantotrichum) by pulsed electric field assisted pepsin[J]. Journal of Pure and Applied Microbiology, 2013, 7: 621-629.
[4] 庄兰英, 腾欧. 生产鹿茸精副产品——鹿茸渣胶成分分析与利用[J]. 特产科学实验, 1983(2): 50-51.
[5] ANGERSBACH A, HEINZ V, KNORR D. Effects of pulsed electric fields on cell membranes in real food systems[J]. Innovative Food Science & Emerging Technologies, 2000, 1(2): 135-149.
[6] 刘学军, 殷涌光, 范松梅, 等. 高压脉冲电场催陈葡萄酒香气成分变化的GC-MS分析[J]. 食品科学, 2006, 27(12): 654-657.
[7] YIN Yong-guang, HE Gui-dan. A fast high-intensity pulsed electric fields (PEF)-assisted extraction of dissoluble calcium from bone[J]. Separation and Purification Technology, 2008, 61(2): 148-152.
[8] YANG R J, LI S Q, ZHANG Q H. Effects of pulsed electric fields on the activity of enzymes in aqueous solution[J]. Journal of Food Science, 2004, 69(4): 241-248.
[9] OHSHIMA T, TAMURA T, SATO M. Influence of pulsed electric field on various enzyme activities[J]. Journal of Electrostatics, 2007, 65: 156-161.
[10] 赵武奇, 殷涌光, 关伟, 等. 超高压脉冲电场杀菌系统设计与试验[J]. 农业机械学报, 2002, 33(3): 67-69.
[11] SAITO M, KUNISAKI N, URANO N, et al. Collagen as the major edible component of sea cucumber (Stichopus japonicus) [J]. Journal of Food Science, 2002, 67(4): 1 319-1 322.
[12] MILARDOVIC S, IVEKOVIC D, GRABARIC B S. A novelamperometric method for antioxidant activity determination using DPPH free radical[J]. Bioelectrochemistry, 2006, 68(2): 175-180.
[13] 王运改, 林琳, 李明辉, 等. 鮰鱼皮明胶抗氧化肽的制备工艺研究[J]. 食品科学, 2010, 31(19): 254-258.
[14] 何小庆, 曹文红, 章超桦, 等. 波纹巴非蛤蛋白酶解产物的抗氧活性及分子量分布研究[J]. 现代食品科技, 2014, 30(1): 74-80.
[15] 张杨, 胡磊, 汪少芸, 等. 响应面优化酶解法制备蒲公英籽蛋白抗氧化肽工艺[J]. 食品工业科技, 2016, 37(5): 258-262.
[16] 姜惠敏, 李明, 曹光群, 等. 酶解制备羊胎盘抗氧化肽工艺条件的优化[J]. 食品与生物技术学报, 2017, 36(1): 98-104.
[17] 唐梦茹, 陈涛涛, 汪少芸, 等. 响应面优化酶解法制备韭菜籽蛋白抗氧化肽工艺[J]. 中国食品学报, 2016, 16(4): 159-165.
[18] 毛银, 朱科学, 张士康, 等. 响应面优化酶法制备茶叶蛋白抗氧化肽的工艺研究[J]. 食品工业科技, 2013, 34(7): 169-173.
[19] 韦汉昌, 韦群兰, 韦善清. 高压脉冲电场提取猪皮胶原蛋白[J]. 广西科学, 2011, 18(3): 235-237.
[20] 刘唯佳. 鹿茸中水溶性蛋白质的提取及鹿茸综合利用的研究[D]. 长春: 吉林大学, 2013: 47.
[21] 任清, 张晓平, 赵世峰, 等. 利用大孔吸附树脂DA201-CⅡ对燕麦蛋白水解液脱盐的研究[J]. 食品科学, 2009, 30(10): 118-122.
[22] 孙旭, 肖志刚, 马秀婷, 等. 大孔吸附树脂对玉米蛋白水解液脱盐效果的研究[J]. 食品与机械, 2012, 28(6): 43-46.
[23] ZHANG Feng-xiang, WANG Zhang, XU Shi-ying. Macropor-ous resin purification of grass carp fish (Ctenopharyngodon idella) scale peptides with in vitro angiotensin-I converting enzyme (ACE) inhibitory ability[J]. Food Chemistry, 2009, 117(3): 387-392.
[24] 张周莉, 李诚, 刘爱平, 等. 响应面优化酶解法制备猪肩胛骨抗氧化肽工艺[J]. 核农学报, 2017, 31(12): 2 358-2 366.
[25] 柯勤勤, 罗洋洋, 何林凌, 等. 草鱼鱼鳞抗氧化肽的酶法制备及其抗氧化稳定性研究[J]. 四川农业大学学报, 2017, 35(3): 433-451.