Abstract
Aiming at the problem that the solid-state fermentation of liquor depended on the artificial experience to judge the quality of Daqu without quantitative judgment standard, a set of Daqu quality detection system based on machine vision was studied. The dynamic threshold segmentation method was used in this system, RGB transform Lab color space, CNN convolutional neural network and other methods were used to extract three kinds of visual information characteristics of Daqu, the geometric parameters, color and crack. Therefore, the corresponding relationship between the visual information characteristics and the quality of Daqu was established, and the quality of Daqu was judged according to the established relationship. The experimental results showed that the measuring accuracy of the system was 1mm. At the same time, the system could accurately identify and extract the visual characteristics of milky white hyphae, Monascus and Daqu surface fractures of relative sections. Through 1 000 experiments, the accuracy of the identification of Daqu visual information could reach 99.0%, which couldmeet the requirements of the related wine production.
Publication Date
4-28-2018
First Page
80
Last Page
84
DOI
10.13652/j.issn.1003-5788.2018.04.015
Recommended Citation
Xinhao, ZHANG; Danping, HUANG; Jianping, TIAN; and Dan, HUANG
(2018)
"Research on the Daqu quality detection system based on machine vision,"
Food and Machinery: Vol. 34:
Iss.
4, Article 15.
DOI: 10.13652/j.issn.1003-5788.2018.04.015
Available at:
https://www.ifoodmm.cn/journal/vol34/iss4/15
References
[1] 泸州老窖集团有限责任公司. 泸型酒技艺大全[M]. 北京: 中国轻工业出版社, 2011: 82-85.
[2] 沈怡方. 白酒生产技术全书[M]. 北京: 中国轻工业出版社, 1998: 54-57.
[3] 李安军, 何宏魁. “基于物联网技术的数字化曲房综合管控系统”在浓香型白酒生产过程中的应用[J]. 酿酒科技, 2014(2): 63-64, 67.
[4] 敖宗华, 陕小虎, 沈才洪, 等. 国内主要大曲相关标准及研究进展[J]. 酿酒科技, 2010(2): 104-108.
[5] 肖冬光, 赵树欣, 陈叶福, 等. 白酒生产技术[M]. 2版. 北京: 化学工业出版社, 2013: 70-74.
[6] 何宏魁, 李兰, 汤有宏, 等. 古井贡酒大曲感官评价与其微生物、理化指标的关系研究[J]. 酿酒, 2017, 44(1): 58-63.
[7] 炊伟强, 敖宗华, 张春林, 等. 泸州老窖大曲感官特征与微生物、理化指标和生化性能的关联研究[J]. 食品与生物技术学报, 2011, 30(5): 761-766.
[8] 黄丹平, 廖世鹏, 于少东, 等. 基于机器视觉瓦楞纸板自动计数系统研究[J]. 机械工程学报, 2017, 53(10): 79-86.
[9] 郭康, 黄丹平, 王磊, 等. 基于机器视觉的曲面字符缺陷检测系统研究[J]. 现代制造工程, 2016(12): 122-127.
[10] 黄河, 李庆武, 范习健. 采用局部动态阈值的图像分割算法[J]. 光电子技术, 2011, 31(1): 10-13.
[11] RAFAEL C G, RICHARD E W, STEVEN L E. 数字图像处理[M]. 阮秋琦, 阮宇智, 译. 3版. 北京: 电子工业出版社, 2011: 487-490.
[12] 田原嫄, 黄合成, 谭庆昌, 等. 基于机器视觉的零件尺寸测量[J]. 激光与光电子学进展, 2010, 47(1): 82-90.
[13] 刘琼, 史诺. 基于Lab和YUV颜色空间的农田图像分割方法[J]. 国外电子测量技术, 2015, 34(4): 39-41.
[14] 乔丽. 基于CNN的工件缺陷检测方法研究及系统设计[D]. 武汉: 华中师范大学, 2016: 1-16.
[15] 卢宏涛, 张秦川. 深度卷积神经网络在计算机视觉中的应用研究综述[J]. 数据采集与处理, 2016, 31(1): 1-17.