•  
  •  
 

Abstract

Portable NIR spectrometers was used for the identification of six kinds of food-contacted plastic material including polyethylene terephthalate (PET), high-density polyethylene (HDPE), low-density polyethylene (LDPE), polyvinyl chloride (PVC), polystyrene (PS) and polycarbonate (PC). Four kinds of spectral preprocessing methods including 5-point smoothing, multivariate scattering correction (MSC), first-order derivative and standard normal variable transformation (SNV) were used to preprocess the spectra of plastic samples. Principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA) were used to analyze the spectral space distribution of plastic samples and establish qualitative discriminant models. The results showed that six kinds of food-contacted plastic material could be clearly separated in the first three principal component spaces after the pretreatment of SNV and MSC methods. The PLS-DA combined with SNV could be used to get a concise plastic material qualitative discriminant model, and the correct recognition rates (CRR) were 100% both for calibration and prediction datasets. The method was expected to be a reference method for rapid identification of food-contacted plastic materials.

Publication Date

4-28-2018

First Page

124

Last Page

127

DOI

10.13652/j.issn.1003-5788.2018.04.025

References

[1] 张继斌. 基于食品安全的塑料食品包装设计研究[J]. 食品研究与开发, 2016, 37(22): 44-47.
[2] 朱文亮. 食品塑料包装材料污染物迁移的研究进展[J]. 食品与机械, 2010, 26(6): 89-93.
[3] 刘宇飞, 李忠海, 黎继烈, 等. 塑料食品包装材料中常用抗氧化剂迁移研究进展[J]. 食品与机械, 2012, 28(6): 251-255.
[4] 张静, 吕亮, 王莹, 等. 食品用塑料包装材料中有害物质检测技术研究进展[J]. 塑料科技, 2012, 40(11): 95-98.
[5] 高荣强, 范世福. 现代近红外光谱分析技术的原理及应用[J]. 分析仪器, 2002(3): 9-12.
[6] 王君, 刘蓉. 近红外光谱技术在液态食品掺假检测中的应用[J]. 食品工业科技, 2016(7): 374-380.
[7] 莫长涛, 郇帅, 苏海林. 使用近红外LED光源测量塑料薄膜的厚度[J]. 物理实验, 2016(1): 9-13.
[8] 王冬, 马智宏, 赵柳, 等. 显微近红外图像用于分辨2种塑料材料的成像方法研究[J]. 计算机与应用化学, 2010, 27(12): 1 665-1 668.
[9] 侯玉磊, 谢兰桂, 赵霞, 等. 近红外和红外光谱法联合识别聚乙烯再生塑料[J]. 中国医药工业杂志, 2015, 46(6): 614-619.
[10] 张磊, 殷刚, 邢家新. 红外光谱法快速鉴别食品用塑料包装袋材料[J]. 包装与食品机械, 2016, 32(6): 65-67.
[11] 李华, 王菊香, 邢志娜, 等. 改进的K/S算法对近红外光谱模型传递影响的研究[J]. 光谱学与光谱分析, 2011(2): 362-365.
[12] 王动民, 纪俊敏, 高洪智. 多元散射校正预处理波段对近红外光谱定标模型的影响[J]. 光谱学与光谱分析, 2014(9): 2 387-2 390.
[13] 尼珍, 胡昌勤, 冯芳. 近红外光谱分析中光谱预处理方法的作用及其发展[J]. 药物分析杂志, 2008(5): 824-829.
[14] 曾祥燕, 赵良忠, 孙文兵, 等. 基于PCA和BP神经网络的葡萄酒品质预测模型[J]. 食品与机械, 2014, 30(1): 40-44.
[15] 郝勇, 孙旭东, 高荣杰, 等. 基于可见/近红外光谱与SIMCA和PLS-DA的脐橙品种识别[J]. 农业工程学报, 2010, 26(12): 373-377.
[16] HU Wei-hong, SUN Da-wen, BLASCO J. Rapid monitoring 1-MCP-induced modulation of sugars accumulation in ripening’Hayward’ kiwifruit by Vis/NIR hyperspectral imaging[J]. Postharvest Biology and Technology, 2017, 125(6): 168-180.
[17] 朱向荣, 李高阳, 苏东林, 等. 基于近红外光谱与组合间隔偏最小二乘法的稻米镉含量快速检测[J]. 食品与机械, 2015, 31(4): 43-46, 50.
[18] 刘燕德, 郝勇, 蔡丽君. 无损光电检测技术原理及应用[J]. 华东交通大学学报, 2010, 27(6): 74-77.
[19] BRUNO G B, NDIA R, LEANDRO S O, et al. Development and analytical validation of a screening method for simultaneous detection of five adulterants in raw milk using mid-infrared spectroscopy and PLS-DA[J]. Food Chemistry, 2015, 181: 31-37.
[20] GRASEL F S,FERROC M F. A rapid and non-invasive method for the classification of natural tannin extracts by near-infrared spectroscopy and PLS-DA[J]. Analytical Methods, 2016, 8: 644-649.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.