Abstract
In order to solve the problem in the accuracy of circularity of apple, the improved algorithm of the particle swarm was adopted. Firstly, mathematical model circularity of apple was established. Secondly, particle swarm algorithm was improved, which was included inertia weight fuzzy control based on membership function of generalized bell shaped distribution, adaptive Z shaped membership function adjustment process, and selecting fitness function. Finally, the algorithm termination condition and flow were given. The experimental simulation results showed that the improved particle swarm optimization algorithm convergence was faster than the particle swarm optimization, and the accuracy of Jonakin and Fuji Apple roundness detection, about 96% and 97%, was higher than that of other algorithms. In conclusion, this could algorithm be used for circularity of apple measurement.
Publication Date
5-28-2018
First Page
131
Last Page
133,192
DOI
10.13652/j.issn.1003-5788.2018.05.028
Recommended Citation
Cuixiang, SHEN and Xiaoyu, ZHANG
(2018)
"Circularity of apple measurement based on the improved algorithm of the particle swarm optimization,"
Food and Machinery: Vol. 34:
Iss.
5, Article 28.
DOI: 10.13652/j.issn.1003-5788.2018.05.028
Available at:
https://www.ifoodmm.cn/journal/vol34/iss5/28
References
[1] 王丹丹, 宋怀波, 何东健. 苹果分级机器人视觉系统研究进展[J]. 农业工程学报, 2017, 33(10): 59-69.
[2] 张健, 张莉华. 基于改进二进制粒子群算法的苹果多特征提取分级研究[J]. 浙江农业学报, 2016, 28(9): 1 609-1 615.
[3] 袁金丽, 吉海彥, 郭志涛. 基于计算机视觉的苹果表面缺陷识别方法[J]. 农业网络信息, 2005(6): 10-13.
[4] 陈乾辉, 吴德刚. 一种新型苹果果实特征提取算法[J]. 食品与机械, 2018, 34(2): 124-128.
[5] 冯斌, 汪愈华. 基于计算机视觉的水果大小检测方法[J]. 农业机械学报, 2003, 34(1): 73-75.
[6] 殷蓉, 高珏, 孟国飞, 等. 一种应用圆形度的番茄形状分级方法[J]. 常熟理工学院学报, 2013, 27(4): 100-103.
[7] 李卓, 杨子敬, 郝建唯, 等. 苹果幼果图像的分割与识别算法研究[J]. 沈阳理工大学学报, 2015, 34(1): 34-39.
[8] 李思广. 基于机算机视觉的杨梅自动检测分级[J]. 农机化研究, 2018(9): 39-42.
[9] 朱蓓. 苹果全表面图像信息获取方法的研究[D]. 杭州: 浙江大学, 2013: 20-40.
[10] 王福杰. 运动水果的形状描述方法与在线检测技术[D]. 杭州: 浙江大学, 2013: 35-45.
[11] 薛爱军, 王晓丹. 基于子类划分和粒子群优化的自适应编码多类分类方法[J]. 控制与决策, 2018, 33(2): 211-218.