Abstract
Ultrasonic microwave-assisted extraction of oligosaccha-rides from lotus (Nelumbo nucifera Gaertn.) seeds (LOS) was investigated. The five parameters, ultrasonic time, ultrasonic temperature, microwave power, microwave time and solid to liquid ratio were optimized using the Box-behnken design with a quadratic regression model built by using Response Surface Methodology (RSM). The highest oligosaccharide yield, (10.525±0.017)%, was obtained under optimal conditions for ultrasonic time, ultrasonic temperature, microwave power , liquid to solid ratio and microwave time at 10 min, 45 ℃,100 W,100 min and 301 (mL/g), respectively.
Publication Date
5-28-2018
First Page
134
Last Page
141
DOI
10.13652/j.issn.1003-5788.2018.05.029
Recommended Citation
Zebin, GUO; Jinghao, CHEN; Xiangze, JIA; Xu, LU; and Baodong, ZHENG
(2018)
"Optimization of ultrasonic microwave-assisted extraction of oligosaccharide from lotus (Nelumbo nucifera Gaertn.) seeds using response surface methodology,"
Food and Machinery: Vol. 34:
Iss.
5, Article 29.
DOI: 10.13652/j.issn.1003-5788.2018.05.029
Available at:
https://www.ifoodmm.cn/journal/vol34/iss5/29
References
[1] 吴小南, 陈洁, 汪家梨, 等. 发酵莲子乳对小鼠胃肠道运动, 吸收功能的调节作用[J]. 世界华人消化杂志, 2005, 13(21): 2 535-2 539.
[2] JOVANOVIC-MALINOVSKA R, KUZMANOVA S, WINK-ELHAUSEN E. Application of ultrasound for enhanced extraction of prebiotic oligosaccharides from selected fruits and vegetables[J]. Ultrasonics Sonochemistry. 2015, 22: 446-453.
[3] LU Xu, ZHANG Yi, WU Xiao-ting, et al. Effect of specific structure of lotus seed oligosaccharides on the production of short-chain fatty acids by Bifidobacterium adolescentis[J]. Chinese Journal of Structural Chemistry, 2015, 34(4): 510-522.
[4] AWAD T, MOHARRAM H, SHALTOUT O, et al. Applications of ultrasound in analysis, processing and quality control of food: A review[J]. Food Research International, 2012, 48(2): 410-427.
[5] LUQUE-GARCIA J, DE CASTRO M L. Ultrasound: a powerful tool for leaching[J]. TrAC Trends in Analytical Chemistry, 2003, 22(1): 41-47.
[6] ZHANG Bin, YANG Rui-yuan, LIU Chun-Zhao. Microwave-assisted extraction of chlorogenic acid from flower buds of Lonicera japonica Thunb[J]. Separation and Purification Technology, 2008, 62(2): 480-483.
[7] CRAVOTTO G, BOFFA L, MANTEGNA S, et al. Improved extraction of vegetable oils under high-intensity ultrasound and/or microwaves[J]. Ultrasonics Sonochemistry, 2008, 15(5): 898-902.
[8] CHEN Yi-yong, GU Xiao-hong, HUANG Sheng-quan, et al. Optimization of ultrasonic/microwave assisted extraction (UMAE) of polysaccharides from Inonotus obliquus and evaluation of its anti-tumor activities[J]. International Journal of Biological Macromolecules, 2010, 46(4): 429-435.
[9] GUO Ze-bin, ZENG Shao-xiao, ZHANG Yi, et al. The effects of ultra-high pressure on the structural, rheological and retrogradation properties of lotus seed starch[J]. Food Hydrocolloids, 2015, 44: 285-291.
[10] MACHADO M T, EA K S, VIEIRA G S, et al. Prebiotic oligosaccharides from artichoke industrial waste: evaluation of different extraction methods[J]. Industrial Crops and Products, 2015, 76: 141-148.
[11] 田玉庭, 卢旭, 郑宝东. 响应面法优化莲子低聚糖超声波辅助提取工艺[J]. 北京工商大学学报: 自然科学版, 2012, 30(2): 17-21.
[12] WU Yan, CUI Steve, TANG Jian, et al. Optimization of extraction process of crude polysaccharides from boat-fruited sterculia seeds by response surface methodology[J]. Food Chemistry, 2007, 105(4): 1 599-1 605.
[13] MARAN J P, SIVAKUMAR V, SRIDHAR R, et al. Development of model for barrier and optical properties of tapioca starch based edible films[J]. Carbohydrate Polymers, 2013, 92(2): 1 335-1 347.
[14] KRATCHANOVA M, PAVLOVA E, PANCHEV I. The effect of microwave heating of fresh orange peels on the fruit tissue and quality of extracted pectin[J]. Carbohydrate polymers, 2004, 56(2): 181-185.
[15] TOMA M, VINATORU M, PANIWNYK L, et al. Investigation of the effects of ultrasound on vegetal tissues during solvent extraction[J]. Ultrasonics Sonochemistry, 2001, 8(2): 137-142.
[16] 卢旭, 张帅, 林姗, 等. 莲子低聚糖提取工艺优化及其组分分析[J]. 热带作物学报, 2015, 36(4): 813-820.
[17] 宋春丽, 王文侠, 曾凤彩, 等. 超声波和微波辅助提取大豆低聚糖的工艺比较[J]. 食品与机械, 2011, 27(2): 47-50.
[18] QUAN Can, SUN Yong-yue, QU Jia. Ultrasonic extraction of ferulic acid from Angelica sinensis[J]. The Canadian Journal of Chemical Engineering, 2009, 87(4): 562-567.
[19] SANTOS H, CAPELO J. Trends in ultrasonic-based equipment for analytical sample treatment[J]. Talanta, 2007, 73(5): 795-802.
[20] KNORR D, ADE-OMOWAYE B, HEINZ V. Nutritional improvement of plant foods by non-thermal processing[J]. Proceedings of the Nutrition Society, 2002, 61(2): 311-318.
[21] YANG Li, CAO Ya-lan, JIANG Guo-jiang, et al. Response surface optimization of ultrasound-assisted flavonoids extraction from the flower of Citrus aurantium L. var. amara Engl[J]. Journal of Separation Science, 2010, 33(9): 1 349-1 355.
[22] YAN Ming-ming, LIU Wei, FU Yu-jie, et al. Optimisation of the microwave-assisted extraction process for four main astragalosides in Radix Astragali[J]. Food Chemistry, 2010, 119(4): 1 663-1 670.
[23] YING Zhi, HAN Xiao-xiang, LI Jian-rong. Ultrasound-assisted extraction of polysaccharides from mulberry leaves[J]. Food Chemistry, 2011, 127(3): 1 273-1 279.