Abstract
In this review, the concept of growth heterogeneity of foodborne pathogenic bacteria was introduced. Moreover, the domestic and abroad study progress was reviewed, and the expression forms and influencing factors of strain growth heterogeneity were systematically summarized. In addition, the solutions for reducing the accuracy the growth heterogeneity of foodborne pathogenic bacteria to microbial risk assessment were also presented.
Publication Date
5-28-2018
First Page
164
Last Page
168
DOI
10.13652/j.issn.1003-5788.2018.05.034
Recommended Citation
Yi, LU; Haiquan, LIU; Yong, ZHAO; Jing, XIE; and Yingjie, PAN
(2018)
"The influence of foodborne pathogens growth heterogeneity on risk assessment,"
Food and Machinery: Vol. 34:
Iss.
5, Article 34.
DOI: 10.13652/j.issn.1003-5788.2018.05.034
Available at:
https://www.ifoodmm.cn/journal/vol34/iss5/34
References
[1] WHO. Media Centre 2017: Foodsafety\. (2017-10-26)[2018-05-25]. http://who.int/mediacentre/factsheets/fs399/en/.
[2] WU Yong-ning, CHEN Yan. Food safety in China[J]. Journal of Epidemiology & Community Health, 2013, 67(6): 478-479.
[3] WHO. Publications2016: Foodsafety\. (2016-10-20) [2018-05-25]. http://www.who.int/foodsafety/publications/infosan/en/.
[4] 国家食品药品监督总局. “十三五”国家食品安全规\. (2017-2-14) [2018-05-25]. http://www.sda.gov.cn/WS01/CL0852/169745.html.
[5] 赵勇, 王敬敬, 唐晓阳, 等. 水产品中食源性致病微生物风险评估研究现状[J]. 上海海洋大学学报, 2012(5): 899-905.
[6] HALLET B. Playing Dr Jekyll and Mr Hyde: combined mechanisms of phase variation in bacteria[J]. Current Opinion in Microbiology, 2001, 4(5): 570-581.
[7] 刘春春, 赵云, 杭海英. 流式细胞术揭示出枯草芽孢杆菌多态异质性[J]. 生物化学与生物物理进展, 2014(4): 393-402.
[8] 张怀强, 卢丽丽, 阎雪岚, 等. 细菌群体异质性对生长动态过程的影响及其表征[J]. 中国科学: C辑: 生命科学, 2007(2): 246-256.
[9] ZHANG Ling-ling, ORTH K. Virulence determinants for Vibrio parahaemolyticus infection[J]. Current Opinion in Microbiolo-gy, 2013, 16(1): 70-77.
[10] HASEGAWA A, HARA-KUDO Y, OGATA K, et al. Differences in the stress tolerances of Vibrio parahaemolyticus strains due to their source and harboring of virulence genes[J]. Journal of Food Protection, 2013, 76(8): 1 456-1 462.
[11] 唐晓阳, 韩婷, 谢晶, 等. 不同致病性副溶血性弧菌在南美白对虾中的生长动力学参数比较研究[J]. 食品工业科技, 2013(2): 78-82.
[12] 郭丹凤, 张昭寰, 肖莉莉, 等. 不同耐药性致病性副溶血性弧菌的生长特性比较研究[J]. 食品工业科技, 2014(19): 137-141.
[13] BREHM-STECHER B F, JOHNSON E A. Single-cell microbiology: tools, technologies, and applications[J]. Microbiology and Molecular Biology Reviews, 2004, 68(3): 538-559.
[14] NAIR G B, RAMAMURTHY T, BHATTACHARYA S K, et al. Global dissemination of Vibrio parahaemolyticus serotype O3: K6 and its serovariants[J]. Clinical Microbiology Reviews, 2007, 20(1): 39-48.
[15] LIANOU A, KOUTSOUMANIS K P. Effect of the growth environment on the strain variability of Salmonellaenterica kinetic behavior[J]. Food Microbiology, 2011, 28(4): 828-837.
[16] MOKHTARI A, JAYKUS L-A. Quantitative exposure model for the transmission of norovirus in retail food preparation[J]. International Journal of Food Microbiology, 2009, 133(1): 38-47.
[17] YAMAMOTO A, IWAHORI J I, VUDDHAKUL V,et al. Quantitative modeling for risk assessment of Vibrio parahaemolyticus in bloody clams in southern Thailand[J]. Interna-tional Journal of Food Microbiology, 2008, 124(1): 70-78.
[18] ELEXSON N, YAYA R, NOR A, et al. Biofilm assessment of Vibrio parahaemolyticus from seafood using random amplified polymorphism DNA-PCR[J]. International Food Research Journal, 2014, 21(1): 59-65.
[19] KRUIZINGA A G, BRIGGS D, CREVEL R W R, et al. Probabilistic risk assessment model for allergens in food: sensitivity analysis of the minimum eliciting dose and food consumption[J]. Food and Chemical Toxicology, 2008, 46(5): 1 437-1 443.
[20] 邵玉芳, 汪雯, 章荣华, 等. 浙江省生食牡蛎中副溶血性弧菌的风险评估[J]. 中国食品学报, 2010(3): 193-199.
[21] ROSENOW E M, MARTH E H. Growth of Listeria monocytogenes in skim, whole and chocolate milk, and in whipping cream during incubation at 4, 8, 13, 21 and 35 degrees C[J]. Journal of Food Protection, 1987, 50(6): 452-459.
[22] ARYANI D C, DEN BESTEN H M, HAZELEGER W C, et al. Quantifying strain variability in modeling growth of Listeria monocytogenes[J]. International Journal of Food Microbiology, 2015, 208: 19-29.
[23] MUNOZ-CUEVAS M, GUEVARA L, AZNAR A, et al. Characterisation of the resistance and the growth variability of; Listeria monocytogenes after high hydrostatic pressure treatments[J]. Food Control, 2013, 29(2): 409-415.
[24] BEGOT C, LEBERT I, LEBERT A. Variability of the response of 66 Listeria monocytogenes and Listeria innocua strains to different growth conditions[J]. Food Microbiology, 1997, 14(5): 403-412.
[25] POUILLOT R, ALBERT I, CORNU M, et al. Estimation of uncertainty and variability in bacterial growth using Bayesian inference: Application to Listeria monocytogenes[J]. International Journal of Food Microbiology, 2003, 81(2): 87-104.
[26] ARYANI D C, DEN BESTEN H M, HAZELEGER W C, et al. Quantifying strain variability in modeling growth of Listeriamonocytogenes[J]. International Journal of Food Microbiol-ogy, 2015, 208: 19.
[27] BARBOSA W B, CABEDO L, WEDERQUIST H J, et al. Growth variation among species and strains of Listeria in culture broth[J]. Journal of Food Protection, 1994, 57(9): 765-769.
[28] KOUTSOUMANIS K. A study on the variability in the growth limits of individual cells and its effect on the behavior of microbial populations[J]. International Journal of Food Microbi-ology, 2008, 128(1): 116-121.
[29] AUGUSTIN J C, BERGIS H, MIDELETBOURDIN G, et al. Design of challenge testing experiments to assess the variability of Listeria monocytogenes growth in foods[J]. Food Microbiology, 2011, 28(4): 746-754.
[30] AVERY S M, BUNCIC S. Differences in pathogenicity for chick embryos and growth kinetics at 37 degrees C between clinical and meat isolates of Listeria monocytogenes previously stored at 4 degrees C[J]. International Journal of Food Microbiology, 1997, 34(3): 319.
[31] 唐晓阳, 郭晓滨, 郭丹凤, 等. 高通量快速测定致病性及非致病性副溶血性弧菌最大比生长速率[J]. 微生物学通报, 2013, 40(11): 2 138-2 144.
[32] MA Feng-li, LIU Hai-quan, WANG Jing-jing, et al. Behavior of Vibrio parahemolyticus, cocktail including pathogenic and nonpathogenic strains on cooked shrimp[J]. Food Control, 2016, 68: 124-132.
[33] LIU Bing-xuan, LIU Hai-quan, PAN Ying-jie, et al. Comparison of the Effects of Environmental Parameters on the Growth Variability of Vibrio parahaemolyticus Coupled with Strain Sources and Genotypes Analyses[J]. Frontiers in Microbiology, 2016, DOI: 10.3389/fmicb.2016.00994.
[34] DEZ-GARCA M, CAPITA R, ALONSO-CALLEJAC. Influence of serotype on the growth kinetics and the ability to form biofilms of Salmonella isolates from poultry[J]. Food Microbiology, 2012, 31(2): 173-180.
[35] FEHLHABER K, KRGER G. The study of Salmonella enteritidis growth kinetics using Rapid Automated Bacterial Impedance Technique[J]. Journal of Applied Microbiology, 1998, 84(6): 945-949.
[36] LIANOU A, KOUTSOUMANIS K P. Effect of the growth environment on the strain variability of Salmonella enterica kinetic behavior[J]. Food Microbiology, 2011, 28(4): 828.
[37] LIANOU A, KOUTSOUMANIS K P. A stochastic approach for integrating strain variability in modeling Salmonella enterica growth as a function of pH and water activity[J]. International Journal of Food Microbiology, 2011, 149(3): 254-261.
[38] HABERBECK L U, OLIVEIRA R C, VIVIJS B, et al. Variability in growth/no growth boundaries of 188 different Escherichia coli strains reveals that approximately 75% have a higher growth probability under low pH conditions than E.coli O157:H7 strain ATCC 43888.[J]. Food Microbiology, 2015, 45(Pt B): 222-230.
[39] GARCIA D, RAMOS A J, SANCHIS V, et al. Is intraspecific variability of growth and mycotoxin production dependent on environmental conditions: A study with Aspergillus carbonarius, isolates[J]. International Journal of Food Microbiology, 2011, 144(3): 432-439.
[40] TOPP E, WELSH M, TIEN Y C, et al. Strain-dependent variability in growth and survival of Escherichia coli in agricultural soil[J]. Fems Microbiology Ecology, 2003, 44(3): 303.
[41] MEMBR J M, LEPORQ B, VIALETTE M, et al. Temperature effect on bacterial growth rate: quantitative microbiology approach including cardinal values and variability estimates to perform growth simulations on/in food[J]. International Journal of Food Microbiology, 2005, 100(1/2/3): 179.
[42] VALIK L, MEDVEDOVA A, BAJUSOVA B, et al. Variability of growth parameters of Staphylococcus aureus in milk[J]. Journal of Food & Nutrition Research, 2008, 47(47): 18-22.
[43] WHO. Risk assessment of Vibrio parahaemolyticus in seafood: interpretative summary and technical report[J]. International Journal of Food Microbiology, 2012, 154(3): 215-216.
[44] SOBRINHO P D, DESTRO M T, FRANCO B D, et al. A quantitative risk assessment model for Vibrio parahaemolytic-us, in raw oysters in Sao Paulo State, Brazil[J]. International Journal of Food Microbiology, 2014, 180: 69-77.
[45] VOSE D J. The application of quantitative risk assessment to microbial food safety[J]. J Food Prot, 1998, 61(5): 640-648.
[46] 陈艳, 刘秀梅. 福建省零售生食牡蛎中副溶血性弧菌的定量危险性评估[J]. 中国食品卫生杂志, 2006(2): 103-108.
[47] 刘弘, 罗宝章, 秦璐昕, 等. 生食三文鱼片副溶血性弧菌污染的定量风险评估研究[J]. 中国食品卫生杂志, 2012(1): 18-22.
[48] 邹婉虹. 福建省牡蛎食用中感染副溶血性弧菌的风险评估[J]. 中国水产, 2003(1): 70-71.
[49] LEI Li, WONG Hin-chung, NONG Wen-yan, et al. Comparative genomic analysis of clinical and environmental strains provides insight into the pathogenicity and evolution of Vibrio parahaemolyticus[J]. BMC Genomics, 2014, 15(1): 1 135.
[50] 丁文艳, 宁喜斌, 李玉婷, 等. 不同副溶血性弧菌菌株成膜能力及成膜影响因子的研究[J]. 食品工业科技, 2014(23): 163-167.
[51] RUSSELL A B, PETERSON S B, MOUGOUS J D. Type VI secretion system effectors: poisons with a purpose[J]. Nature Reviews Microbiology, 2014, 12(2): 137-148.