Abstract
In order to solve the problem of hickory nuts’ material mixing which was difficult to screen after breaking the shells, an image processing algorithm for hickory nuts color and texture selection was proposed based on fuzzy c-means clustering algorithm. The program with user interface for the separation of hickory nuts’ shells and kernels was developed on the Labview software platform. By extracting the characteristic data the hickory nuts with separation substances value of hue, saturation, value, angular second moment, entropy, inverse different moment and correlation, building a sample set of characteristic data, optimal data subset is preferred in accordance with the principal component analysis. After using fuzzy clustering algorithm to calculate the cluster center of corresponding object feature set, the membership degree of the test sample to the corresponding cluster center was calculated. According to the principle of maximum degree of membership, the rational classification of the shells, inner septa(including the inner wall of the shell)and kernels from hickory nuts was realized and the kernels were successfully separated from the breakages. As an experimental result of the separation of shells and kernels, this system could correctly classify the test samples and the correct rate of sorting can reach more than 83%. This study provided a reference for the extensive research on testing the color selection and separation of nuts shelled.
Publication Date
6-28-2018
First Page
110
Last Page
114,157
DOI
10.13652/j.issn.1003-5788.2018.06.024
Recommended Citation
Tianyu, WANG; Chengmao, CAO; Chengjian, XIE; and Zheng, LI
(2018)
"Design of hickory nuts shell and kernel sorting system based on fuzzy clustering algorithm,"
Food and Machinery: Vol. 34:
Iss.
6, Article 24.
DOI: 10.13652/j.issn.1003-5788.2018.06.024
Available at:
https://www.ifoodmm.cn/journal/vol34/iss6/24
References
[1] 李夕勃, 赵书岗, 王红霞, 等. 核桃坚果硬壳结构与木质素和纤维素相关性研究[J]. 湖北农业科学, 2012, 51(22): 5 076-5 079.
[2] 丁冉, 曹成茂, 詹超, 等. 仿生敲击式山核桃破壳机的设计与试验[J]. 农业工程学报, 2017, 33(3): 257-264.
[3] 徐克明, 王俊, 邓凡霏, 等. 用于山核桃陈化时间检测的电子鼻传感器阵列优化[J]. 农业工程学报, 2017, 33(3): 281-287.
[4] PEARSON T, DAN B, HALEY S. Color image based sorter for separating red and white wheat[J]. Sensing & Instrumentation for Food Quality & Safety, 2008, 2(4): 280-288.
[5] IQBAL S M, GOPAL A, SANKARANARAYANAN P E, et al. Classification of Selected Citrus Fruits Based on Color Using Machine Vision System[J]. International Journal of Food Properties, 2016, 19(2): 272-288.
[6] 王昊鹏, 李慧. 基于局部二值模式和灰度共生矩阵的籽棉杂质分类识别[J]. 农业工程学报, 2015, 31(3): 236-241.
[7] JUSTUS P J. Color sorting of peanuts, hazelnuts and almonds[J]. International Food Marketing and Technology, 1999, 13(2): 28-30.
[8] 李昕, 李立君, 高自成, 等. 基于偏好人工免疫网络多特征融合的油茶果图像识别[J]. 农业工程学报, 2012, 28(14): 133-137.
[9] 陈海燕, 张爱华, 胡世亚. 基于纹理颜色模型的高原鼠兔突变运动跟踪[J]. 农业工程学报, 2016, 32(11): 214-218.
[10] 毕智健, 张若宇, 齐妍杰, 等. 基于机器视觉的番茄成熟度颜色判别[J]. 食品与机械, 2016, 32(12): 133-136.
[11] 谢锋云, 周建民, 江炜文, 等. 基于隐马尔科夫模型的苹果分级方法研究[J]. 食品与机械, 2016, 32(7): 29-31.
[12] 周金辉, 马钦, 朱德海, 等. 基于机器视觉的玉米果穗产量组分性状测量方法[J]. 农业工程学报, 2015, 31(3): 221-227.
[13] 吴正敏, 曹成茂, 谢承健, 等. 基于图像处理技术和神经网络实现机采茶分级[J]. 茶叶科学, 2017, 37(2): 182-190.
[14] 周敬东, 李敏慧, 周明刚, 等. 油茶果的模糊聚类色选算法[J]. 中国农机化学报, 2015, 36(4): 94-99.
[15] 司永胜, 刘刚, 高瑞. 基于K-均值聚类的绿色苹果识别技术[J]. 农业机械学报, 2009, 40(s1): 100-104.
[16] 胡洁. 高维数据特征降维研究综述[J]. 计算机应用研究, 2008, 25(9): 2 601-2 606.
[17] 应飞, 陈邦兴. 笛卡尔乘积下的FCM聚类研究[J]. 计算机工程与应用, 2010, 46(34): 152-154.
[18] 尹海丽, 王颖洁, 白凤波. 软硬结合的快速模糊C-均值聚类算法的研究[J]. 计算机工程与应用, 2008, 44(22): 172-174.
[19] 刘开第, 赵奇, 周少玲, 等. 机械产品方案设计模糊综合评价中隶属度转换的新方法[J]. 机械工程学报, 2009, 45(12): 162-166.
[20] 赵侠, 汪雄良, 王正明. 基于最优对比度准则的SAR图像相位梯度自聚焦算法[J]. 遥感技术与应用, 2005, 20(6): 606-610.
[21] 夏宁, 任青文, 朱正华. 基于模糊聚类的构件耐久性评估[J]. 工业建筑, 2005, 35(5): 72-74.
[22] 王水鱼, 王小娟. 在虚拟仪器中实现LabVIEW与MATLAB的无缝链接[J]. 计算机系统应用, 2012, 21(11): 123-126.