Abstract
In order to further develop and utilize the polysaccharides in tea residue, taking tea residue after green tea water extraction as raw material, and the yield of water-soluble reducing sugar was taken as the index, the effects of irradiation degradation + alkali degradation + acid degradation on green tea residue preparation of water-soluble reducing sugars were discussed on the basis of optimization of radiation degradation, alkali degradation and acid degradation for preparation of water-soluble reducing sugars. Results: The best degradation rate of irradiation was 1 200 kGy with a yield of 4.13%. The best combination of alkali degradation was 0.05 mol/L sodium hydroxide at 90 ℃ for 1 h, the yield was 2.08%. The optimal process of acid degradation was 9% nitric acid at 100 ℃ for 2 h, and the yield was 10.57%. The best combination of radiation degradation + alkali degradation + acid degradation was that the tea residue was firstly irradiated by irradiation at 1 000 kGy, degraded by the best combination of alkali degradation, and then degraded by the best combination of acid degradation, with the water-reducing sugar yield of 13.18%. The combination of degraded water-soluble reducing sugar has the highest yield.
Publication Date
6-28-2018
First Page
169
Last Page
173
DOI
10.13652/j.issn.1003-5788.2018.06.034
Recommended Citation
Yingying, KONG; An, LIU; Wei, XU; Tuo, ZHANG; Zhihua, GONG; and Wenjun, XIAO
(2018)
"Processing of water-soluble reducing sugar from extracted green tea residue by different degradation methods,"
Food and Machinery: Vol. 34:
Iss.
6, Article 34.
DOI: 10.13652/j.issn.1003-5788.2018.06.034
Available at:
https://www.ifoodmm.cn/journal/vol34/iss6/34
References
[1] 思雨. 提高茶叶深加工比例功能性产品将是未来目标[J]. 中国食品, 2017(1): 92-95.
[2] 尹军峰, 傅尚文, 刘新, 等. 我国茶叶深加工产品的安全问题及对策[J]. 食品科学技术学报, 2014, 32(2): 20-23.
[3] 叶倩, 梁月荣, 陆建良, 等. 茶渣综合利用研究进展[J]. 茶叶, 2005, 31(3): 150-153.
[4] 谢枫, 金玲莉, 涂娟, 等. 茶废弃物综合利用研究进展[J]. 中国农学通报, 2015, 31(1): 140-145.
[5] 殷福珊. 挑战纤维素的利用[J]. 日用化学品科学, 2009, 32(1): 24-26.
[6] 张春艳, 谭兴和, 熊兴耀, 等. 油菜秸秆Co60-γ辐照降解产物分析[J]. 湖南农业大学学报: 自然科学版, 2017, 43(1): 92-97.
[7] 郑明霞, 李来庆, 郑明月, 等. 碱处理对玉米秸秆纤维素结构的影响[J]. 环境科学与技术, 2012, 35(6): 27-31.
[8] 孙万里. 稻草秸秆的预处理及生产乙醇的研究[D]. 无锡: 江南大学, 2010: 13-27.
[9] 彭姿, 谭兴和, 熊兴耀, 等. 稀硫酸处理促进辐照芒草木质纤维素酶解糖化条件的优化[J]. 安徽农业科学, 2013, 41(31): 12 455-12 457, 12 461.
[10] 于鹏亮. 茶渣中蛋白质和多糖的综合提取及其分离纯化[D]. 合肥: 安徽农业大学, 2013: 25-37.
[11] 冯继华, 曾静芬, 陈春茂, 等. 应用Van Soest法和常规法测定纤维素及木质素的比较[J]. 西南民族学院学报, 1994, 20(1): 55-56.
[12] 赵凯, 许鹏举, 谷广烨. 3,5-二硝基水杨酸比色法测定还原糖含量的研究[J]. 食品科学, 2008, 29(8): 534-536.
[13] 杨革生, 邵惠丽, 胡学超. 辐照对竹纤维素聚合度及其结晶结构的影响[J]. 功能高分子学报, 2007, 19-20(2): 143-147.
[14] 张帅. 新型溶剂制备再生纤维素纤维及其结构性能研究[D]. 上海: 东华大学, 2010: 45-64.
[15] 陆晨, 张士康, 朱科学, 等. 碱提酸沉法提取茶叶蛋白质的研究[J]. 现代食品科技, 2011, 27(6): 673-677.
[16] RUAN Dong, ZHANG Li-na, LU Ang, et al. A rapid process for producing cellulose multi-filament fibers from a NaOH/thiourea solvent system[J]. Macromolecular Rapid Communications: Publishing the Newsletters of the European Polymer Federation, 2006, 17: 1 495-1 500.
[17] 李秀艳, 谢瑞琪, 张玉芳. 纤维素水解研究进展[J]. 北京服装学院学报: 自然科学版, 2012, 32(2): 70-78.