Abstract
The equipment that impinges the object with high velocity airflow and freezes it quickly is called impingement quick-freezing equipment. The nozzle form of the equipment is one of the important factors to determine the flow field in the freezing zone, which affects the heat transfer characteristics between the object and the surrounding environment. Based on the nozzle structure of the impingement quick-freezing equipment, the influence of the inclined angle, arrangement and shape of the nozzle on the heat transfer characteristics of the flow field in the impingement quick-freezing equipment is discussed in this paper. Find that the nozzle-to-plate spacing(H/d)and the Reynolds numbers of the fluid play a decisive role in the relationship between the nozzle inclination angle and the average Nusselt numbers. In addition, the different shapes and arrangement of the nozzles also have a great influence on the airflow organization in the system.
Publication Date
6-28-2018
First Page
187
Last Page
191
DOI
10.13652/j.issn.1003-5788.2018.06.037
Recommended Citation
Zhitao, SHU; Jing, XIE; and Dazhang, YANG
(2018)
"Research progress on performance optimization of impingement quick-freezing equipment with nozzle structure,"
Food and Machinery: Vol. 34:
Iss.
6, Article 37.
DOI: 10.13652/j.issn.1003-5788.2018.06.037
Available at:
https://www.ifoodmm.cn/journal/vol34/iss6/37
References
[1] 张珍, 谢晶. 带有上下均风孔板的速冻装置中流场及温度场的数值模拟[J]. 制冷学报, 2009, 30(5): 36-40.
[2] 谢晶. 食品冷冻冷藏原理与技术[M], 北京: 中国农业出版社, 2015: 162-163.
[3] 段雪涛, 徐斌, 胡振武, 等. 速冻装置的分类及研究方法[J]. 冷饮与速冻食品工业, 2003, 9(1): 40-42.
[4] 岳希举, 余铭, 崔静, 等. 速冻食品及速冻设备的发展概况及趋势[J]. 农产品加工·学刊, 2012(12): 94-96.
[5] 卓传敏. 大型速冻设备高效蒸发器传热技术的试验研究[D]. 杭州: 浙江大学, 2006: 2-3.
[6] 唐婉, 谢晶. 速冻设备的分类及性能优化的研究进展[J]. 食品工业科技, 2016, 37(23): 362-366.
[7] 陈洪嘉. 效益明显的空气冲击式冷冻技术[J]. 中国食品工业, 2002(1): 32-32.
[8] 叶琼娟, 余铭, 张全凯, 等. 速冻技术在食品工业中的应用研究进展[J]. 农产品加工·学刊, 2012(12): 97-100.
[9] SUNDSTEN S, ANDERSSON A, TORNBERG E. The effect of the freezing rate on the quality of hamburger[C]// Rapid Cooling of Food, Meeting of IIR Commission C2. Bristol: [s.n.], 2001: 181-186.
[10] INGOLE S B, SUNDARAM K K. Experimental average Nusselt number characteristics with inclined non-confined jet impingement of air for cooling application[J]. Experimental Thermal & Fluid Science, 2016, 77: 124-131.
[11] BEITELMAL A H, SAAD M A, PATEL C D. The effect of inclination on the heat transfer between a flat surface and an impinging two-dimensional air jet[J]. International Journal of Heat & Fluid Flow, 2000, 21(2): 156-163.
[12] GOLDSTEIN R J, FRANCHETT M E. Heat transfer from a flat surface to an oblique impinging jet[J]. Journal of Heat Transfer, 1988, 110(1): 84-90.
[13] YAN X, SANIEI N. Heat transfer from an obliquely impinging circular, air jet to a flat plate[J]. International Journal of Heat & Fluid Flow, 1997, 18(6): 591-599.
[14] CHOO K, KANG T Y, KIM S J. The effect of inclination on impinging jets at small nozzle-to-plate spacing[J]. International Journal of Heat & Mass Transfer, 2012, 55(13/14): 3 327-3 334.
[15] WAEHAYEE M, TEKASAKUL P, NUNTADUSIT C. Influence of nozzle arrangement on flow and heat transfer characteristics of arrays of circular impinging jets[J]. Songklanakarin Journal of Science & Technology, 2013, 35(2): 203-212.
[16] VISKANTA R. Heat transfer to impinging isothermal gas and flame jets[J]. Experimental Thermal Fluid Science, 1993, 6(1): 103-107.
[17] KATTI V, PRABHU S V. Influence of spanwise pitch on local heat transfer distribution due to confined multiple jets with spent air exiting in two opposite directions[J]. Thermophysics Conference, 2013, doi: 10.251416.2018-4126.
[18] 张珍, 谢晶. 上下冲击式高效鼓风冻结装置速度场的数值模拟与验证[J]. 低温工程, 2008(6): 45-50.
[19] KAYS W M, CRAWFORD M E. Convective Heat And Mass Transfer[M]. New York: McGraw Hill, 1980: 409-453.
[20] ATTALLA M, MAGHRABIE H M, QAYYUM A, et al. Influence of the nozzle shape on heat transfer uniformity for in-line array of impinging air jets[J]. Applied Thermal Engineering, 2017, 120: 160-169.
[21] VINZE R, CHANDEL S, LIMAYE M D, et al. Influence of jet temperature and nozzle shape on the heat transfer distribution between a smooth plate and impinging air jets[J]. International Journal of Thermal Sciences, 2016, 99: 136-151.
[22] SANG J L, JUNG H L, DAE H L. Local heat transfer measurements from an elliptic jet impinging on a flat plate using liquid crystal[J]. International Journal of Heat & Mass Transfer, 1994, 37(6): 967-976.
[23] LEE J, LEE S J. The effect of nozzle aspect ratio on stagnation region heat transfer characteristics of elliptic impinging jet[J]. International Journal of Heat & Mass Transfer, 2000, 43(4): 555-575.
[24] CALISKAN S. Flow and heat transfer characteristics of transverse perforated ribs under impingement jets[J]. International Journal of Heat & Mass Transfer, 2013, 66(6): 244-260.
[25] CALISKAN S, BASKAYA S. Velocity field and turbulence effects on heat transfer characteristics from surfaces with V-shaped ribs[J]. International Journal of Heat & Mass Transfer, 2012, 55(21/22): 6 260-6 277.
[26] LYTLE D, WEBB B W. Air jet impingement heat transfer at low nozzle-plate spacings[J]. International Journal of Heat & Mass Transfer, 1994, 37(12): 1 687-1 697.
[27] CHOO K S, KIM S J. Air jet impingement heat transfer at low nozzle-to-plate spacings under a fixed pumping power condition[C]// ASME 2009 Heat Transfer Summer Conference Collocated with the Interpack09 and, Energy Sustainability Conferences. [S.l.]: Journal of Heat Transfer, 2009: 459-465.
[28] DAE H L, JEONGHOON S, MYEONG C J. The effects of nozzle diameter on impinging jet heat transfer and fluid flow[J]. Journal of Heat Transfer, 2004, 126(4): 554-557.
[29] 耿铁, 李德群, 周华民, 等. 冲击射流及其强化换热的研究进展[J]. 机械设计与制造, 2006(6): 154-156.
[30] 王超, 王昭东, 李广阔, 等. 超宽狭缝式喷嘴流场数值模拟和射流速度凸度控制[J]. 轧钢, 2013, 30(2): 6-9.
[31] SARKAR A, NITIN N, KARWE M V, et al. Fluid Flow and Heat Transfer in Air Jet Impingement in Food Processing[J]. Journal of Food Science, 2004, 69(4): CRH113-CRH122.
[32] SARKAR A, SINGH R P. Spatial variation of convective heat transfer coefficient in air impingement applications[J]. Journal of Food Science, 2010, 68(3): 910-916.
[33] SARKAR A, SINGH R P. Air impingement technology for food processing: visualization studies[J]. LWT-Food Science and Technology, 2004, 37(8): 873-879.
[34] ADAMS T M, ABDEL-KHALIK S I, JETER S M, et al. An experimental investigation of single-phase forced convection in microchannels[J]. International Journal of Heat & Mass Transfer, 1998, 41(6/7): 851-857.
[35] OWHAIB W, PALM B. Experimental investigation of single-phase convective heat transfer in circular microchannels[J]. Experimental Thermal & Fluid Science, 2004, 28(2): 105-110.
[36] NA-POMPET K, BOONSUPTHIP W. Effect of a narrow channel on heat transfer enhancement of a slot-jet impingement system[J]. Journal of Food Engineering, 2011, 103(4): 366-376.
[37] 陆蓓蕾. CFD在低温流场中的应用[J]. 发电与空调, 2005, 26(4): 21-24.
[38] 陆蓓蕾, 陈瑞球, 黄建昌, 等. 低温流场气流组织的数值分析[J]. 流体机械, 2006, 34(10): 84-86.
[39] GHAFFARI O, IKHLAQ M, ARIK M. An Experimental Study of Impinging Synthetic Jets for Heat Transfer Augmentation[J]. International Journal of Air-Conditioning and Refrigeration, 2015, 23(3): 83-94.
[40] GHAFFARI O, SOLOVITZ S A, ARIK M. An investigation into flow and heat transfer for a slot impinging synthetic jet[J]. International Journal of Heat & Mass Transfer, 2016, 100: 634-645.