Abstract
In order to study the free radical yield variation law of impinging stream-jet cavitation effects and its influence factors, and to better apply in the field of food processing, the impinging stream-jet cavitation was used to be compared with single impinging stream and single jet cavitation respctively. The effects of upstream pressure, solution temperature, cavitation time and other factors on the yield of hydroxyl radicals (·OH) were investigated. The interaction between factors and their optimum conditions were analyzed by response surface analysis. The experimental results showed that ·OH yield increased first and then decreased with the increase of the pressure and the solution temperature, and increased with the increase of the cavitation time. The order of the influence of each factor on the production of ·OH was: cavitation time >upstream pressure > solution temperature. The optimum technological conditions were as follows: cavitation time 60 min, upstream pressure 0.44 MPa, solution temperature 39.34 ℃, under this condition, the theoretical value of · OH yield was 1.073 7 μmol/L, the experiment actual value was 1.067 4 μmol/L, predicted values and measured values were basically identical.
Publication Date
6-28-2018
First Page
197
Last Page
201
DOI
10.13652/j.issn.1003-5788.2018.06.039
Recommended Citation
Xiaomin, REN; Yongchun, HUANG; Feng, YANG; and Chengdu, HUANG
(2018)
"Optimization of the preparation process of hydroxyl radicals based on impinging stream-jet cavitation effect,"
Food and Machinery: Vol. 34:
Iss.
6, Article 39.
DOI: 10.13652/j.issn.1003-5788.2018.06.039
Available at:
https://www.ifoodmm.cn/journal/vol34/iss6/39
References
[1] 程海涛, 申献双. 水力空化-真空提取茶多酚工艺研究[J]. 现代化工, 2016, 36(10): 157-160.
[2] 毛善巧, 杨锋, 黄永春. 基于高效液相色谱法分析水力空化对蔗糖的影响[J]. 食品工业科技, 2017, 38(1): 189-192.
[3] 黄永春, 高海芳, 吴修超, 等. 水力空化强化糖液亚硫酸法脱色的研究[J]. 食品与机械, 2014, 30(3): 5-7.
[4] WU Yu, HUANG Yong-chun, ZHOU Ying, et al. Degradation of chitosan by swirling cavitation[J]. Innovative Food Science and Emerging Technologies, 2014, 23(6): 188-193.
[5] HUANG Yong-chun, WANG Peng-fei, YUAN Yuan, et al. Synergistic degradation of chitosan by impinging stream and jet cavitation[J]. Ultrasonics Sonochemistry, 2015, 27: 592-601.
[6] 任仙娥, 黄永春, 杨锋, 等. 水力空化对大豆分离蛋白功能性质的影响[J]. 食品与机械, 2014, 30(2): 4-6.
[7] YANG Feng, LIU Xue, REN Xian-e, et al. Swirling cavitation improves the emulsifying properties of commercial soy protein isolate[J]. Ultrasonics Sonochemistry, 2018, 42: 471-481.
[8] DENG Jie, WANG Ai-he, WANG Cai-wen. Experimental Investigation on enhancive effect of hydrodynamic cavitation[J]. Advanced Materials Research, 2013, 781-784: 2 865-2 869.
[9] 张昆明, 刘宝彪, 黄永春, 等. 水力空化强化壳聚糖抗菌微球制备工艺的研究[J]. 保鲜与加工, 2017(2): 12-18.
[10] JUSOH M N H, ARIS A, TALIB J. Hydrodynamic cavitation using double orifice-plates for the generation of hydroxyl radicals[J]. Jurnal Teknologi, 2016, 78(11): 41-47.
[11] 朱孟府, 曾艳, 邓橙, 等. 水力空化在水处理中的应用与研究进展[J]. 环境科学与技术, 2010, 33(S2): 445-449.
[12] HUA I, HOECHEMER R H, HOFFMANN M R. Sonolytic hydrolysis of p-nitrophenyl acetate: the role of supercritical water[J]. Journal of Physical Chemistry, 1994, 99(99): 2 335-2 342.
[13] MADISON M, COWARD G, LIANG Chao, et al. Mechanical pretreatment of biomass-Part I: Acoustic and hydrodynamic cavitation[J]. Biomass and Bioenergy, 2017, 98: 135-141.
[14] 任仙娥, 杨锋, 黄永春, 等. 基于涡流的水力空化对米渣蛋白功能性质的影响[J]. 食品工业科技, 2014, 35(14): 88-90.
[15] 翟磊, 董守平, 冯高坡, 等. 孔板型空化器羟自由基产量影响因素分析[J]. 科技导报, 2010, 28(3): 46-50.
[16] 周玉新, 曲志鹏, 熊伟, 等. 撞击流反应器脱除硫酸尾气中SO2的研究[J]. 化学工程, 2016, 44(4): 18-21.
[17] 王永杰, 晋日亚, 孔维甸, 等. 文丘里管与孔板组合降解苯酚废水研究[J]. 现代化工, 2017, 37(4): 160-163.
[18] 张建伟, 尚盼龙, 闫俊杰, 等. 水平对置双向撞击流混合器的混合效果[J]. 过程工程学报, 2017, 17(5): 959-964.
[19] 朱孟府, 邓橙, 宿红波, 等. 多孔孔板水力空化反应器的水力特性[J]. 环境工程学报, 2013, 7(2): 546-550.
[20] JYOTI K, PANDIT A. Effect of cavitation on chemical disinfection efficiency[J]. Water Research, 2004, 38(9): 2 249-2 258.
[21] 孔祥佳, 吴秋莹, 谢勇, 等. 超声波协同酶解提取坛紫菜藻红蛋白工艺优化[J]. 食品与机械, 2017, 33(9): 156-161.