•  
  •  
 

Abstract

Hyperspectral imaging technology was applied to develop a rapid, accurate and non-destructive detection method for honeysuckle mildew degree levels. The original spectral data were analyzed by three pretreatment methods with Savitzky-Golay (SG) convolution smoothing, Multiple Scatter Correct (MSC) and SG-MSC. A comparison was made among SG, MSC and SG-MSC based on Partial Least Squares (PLS), of which the best pretreatment method was SG-MSC. The Successive Projection Algorithm (SPA) and Competitive Adaptive Reweighted Sampling (CARS) were used to extract the characteristic wavelengths after SG-MSC pretreatment. Partial Least Square Discriminant Analysis (PLS-DA) and Last Squares Support Vector Machine (LS-SVM) were applied to build discriminant analysis models based on characteristic wavelengths. The results showed that the LS-SVM model based on CARS performed the optimal discriminant performance for honeysuckle’s mildew degree levels, with the accuracy of 100% for training set and validation set. Therefore, hyperspectral imaging technology can be used to identify mildew degree in honeysuckle effectively and non-destructively based on characteristic wavelengths.

Publication Date

8-28-2018

First Page

60

Last Page

64,78

DOI

10.13652/j.issn.1003-5788.2018.08.013

References

[1] 国家药典委员会. 中华人民共和国药典: 一部[M]. 2015年版. 北京: 中国医药科技出版社, 2015: 28-29, 205-206.
[2] KONG De-xin, LI Yan-qun, BAI Mei, et al. Correlation between the dynamic accumulation of the main effective components and their associated regulatory enzyme activities at different growth stages in Lonicera Japonica Thunb[J]. Industrial Crops and Products, 2017, 96: 16-22.
[3] 罗磊, 董金龙, 朱文学, 等. 金银花过氧化物酶抑制动力学研究[J]. 食品与机械, 2017, 33(7): 111-116.
[4] 杨青山, 张倩倩, 周建理. 霉变药材的微性状鉴定[J]. 安徽中医药大学学报, 2016, 35(5): 86-88.
[5] 秦筱茂, 郭顺星. 药材霉菌及霉菌毒素污染现状分析[J]. 中国中药杂志, 2011, 36(24): 3 397-3 401.
[6] 杨生瑞, 屈凌波, 孙长坡, 等. 黄曲霉菌株的分离、鉴定及产毒能力分析[J]. 中国粮油学报, 2012, 27(6): 110-114.
[7] 孙欢, 刘胜兰, 胡纲, 等. 当归药材霉变前后质量变化研究[J]. 中国药业, 2016, 26(1): 44-46.
[8] 周华, 乐巍. 霉变对葛根药材品质的影响[J]. 山东中医杂志, 2011(3): 197-198.
[9] WU Di, SUN Da-wen. Advanced applications of hyperspectral imaging technology for food quality and safety analysis and assessment: a review part II: applications[J]. Innovative Food Science and Emerging Technologies, 2013, 1: 15-28.
[10] WU Di, SUN Da-wen. Advanced applications of hyperspectral imaging technology for food quality and safety analysis and assessment: a review part I: fundamentals[J]. Innovative Food Science and Emerging Technologies, 2013, 19: 1-14.
[11] BARANOWSKI P, JEDRYCZKA M, MAZUREK W, et al. Hyperspectral and thermal imaging of oilseed rape (Brassica napus) response to fungal species of the genus alternaria[J]. Plot One, 2015, 10(3): 1-19.
[12] GOWEN A A, O'DONNELL C P, CULLEN P J, et al. Hyperspectral imaging-an emerging process analytical tool for food quality and safety control[J]. Trends in Food Science & Technology, 2007, 18(12): 590-598.
[13] 马艳, 张若宇, 齐妍杰. 加工番茄虫眼及霉变的可见近红外高光谱成像检测[J]. 食品与机械, 2017, 33(6): 135-138.
[14] 龚中良, 郑立章, 文韬, 等. 基于高光谱技术的不同霉变程度籼稻快速鉴别[J]. 中国粮油学报, 2017, 32(8): 123-130.
[15] ZHANG Dong-yan, LIN Fen-fang, HUANG Yan-bo, et al. Detection of wheat powdery mildew by differentiating background factors using hyperspectral imaging[J]. Inernaltion Journal of Agriculture & Biology, 2016, 18(4): 747-756.
[16] SIRIPATRAWAN U, MAKINO Y. Monitoring fungal growth on brown rice grains using rapid and non-destructivehyperspectral imaging[J]. International Journal of Food Microbiology, 2015, 199(16): 93-100.
[17] XIONG Zhen-jie, SUN Da-wen, PU Hong-bin, et al. Non-destructive prediction of thiobarbituric acid reactive substances (TBARS) value for freshness evaluation of chicken meat using hyperspectral imaging[J]. Food Chemistry, 2015, 179(1): 175-181.
[18] 周竹, 李小昱, 高海龙, 等. 马铃薯干物质含量高光谱检测中变量选择方法比较[J]. 农业机械学报, 2012, 43(2): 128-133.
[19] DONG Jin-lei, GUO Wen-chuan. Nondestructive determination of apple internal qualities using near-infrared hyperspectral reflectance imaging[J]. Food Analytical Methods, 2015, 8(10): 2 635-2 646.
[20] 文韬, 洪添胜, 李立君, 等. 基于高光谱技术的霉变稻谷脂肪酸含量无损检测[J]. 农业工程学报, 2015, 31(18): 233-239.
[21] GUO Wen-chuan, ZHAO Fan, DONG Jin-lei. Nondestructive measurement of soluble solids content of kiwifruits using near-infrared hyperspectral imaging[J]. Food Analytical Methods, 2016, 9(1): 38-47.
[22] 蔡健荣, 王建黑, 陈全胜, 等. 波段比算法结合高光谱图像技术检测柑橘果锈[J]. 农业工程学报, 2009, 29(1): 127-131.
[23] 孙晔, 顾欣哲, 王振杰, 等. 高光谱图像对灰葡萄球菌、匍枝根霉、炭疽菌的生长拟合及区分[J]. 食品科学, 2016, 37(3): 137-144.
[24] 许思, 赵光武, 邓飞, 等. 基于高光谱的水稻种子活力无损分级检测[J]. 种子, 2016, 35(4): 34-40.
[25] 袁莹, 王伟, 褚璇, 等. 光谱特征波长的SPA选取和基于SVM的玉米颗粒霉变程度定性判别[J]. 光谱学与光谱分析, 2016, 36(1): 226-230.
[26] NIE Li-xing, DAI Zhong, MA Shuang-cheng. Enhanced accuracy of near-infrared spectroscopy for traditional chinese medicine with competitive adaptive reweighted sampling[J]. Analytical Letters, 2016, 49(14): 2 259-2 267.
[27] 潘磊庆, 王振杰, 孙柯, 等. 基于计算机视觉的稻谷霉变程度检测[J]. 农业工程学报, 2017, 33(3): 272-280.
[28] PU Hong-bin, SUN Da-wen, MA Ji. Using wavelet textural features of visible and near infrared hyperspectral image to differentiate between Fresh and frozen-thawed pork[J]. Food & Bioprocess Technology, 2014, 7(11): 3 088-3 099.
[29] DONG Jin-lei, GUO Wen-chuan. Nondestructive determination of apple internal qualities using near-infrared hyperspectral reflectance imaging[J]. Food Analytical Methods, 2015, 8(10): 2 635-2 646.
[30] 王玲娜, 孙希芳, 张芳, 等. 金银花储藏过程中的美拉德反应[J]. 山东农业科技, 2017, 49(9): 82-87.
[31] 葛朝晖, 张海娟. 基于化学成分含量变化的金银花药材保质期预测[J]. 中国药房, 2017, 28(12): 1 677-1 680.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.