•  
  •  
 

Abstract

The Micro-Crystalline Cellulose (MCC)was prepared by acid hydrolysis method from Artemisia. The effects of solid to liquid, concentration of hydrochloric acid, temperature of acid hydrolysis and time of acid hydrolysis on the yield and degree of polymerization of Artemisia MCC were studied by single factor experiment. The preparation process of MCC was optimized by response surface methodology, and the structure and properties of the microcrystalline cellulose were analyzed. The optimum preparation conditions of MCC were as followed: ratio of solid to liquid 1∶30 (g/mL), concentration of hydrochloric acid 15%, temperature of acid hydrolysis 70 ℃, and time of acid hydrolysis 60 min. Under the optimum conditions, the yield of MCC is 85.14%, the degree of polymeriz-ation is 182.7, the crystallinity is 72.85, the swelling power is 12.5 mL/g, and the hydraulic capacity is 13.875 g/g. The obtained Artemisia MCC has good properties, and is an ideal dietary fiber.

Publication Date

8-28-2018

First Page

139

Last Page

144

DOI

10.13652/j.issn.1003-5788.2018.08.028

References

[1] 陈珍珍, 刘爱国, 李晓敏, 等. 微晶纤维素的特性及其在食品工业中的应用[J]. 食品工业科技, 2014, 35(4): 380-383.
[2] PEERAJIT P, CHIEWCHAN N, DEVAHASTIN S. Effects of pretreatment methods on health-related functional properties of high dietary fiber powder from lime residues[J]. Food Chem, 2012, 132(4): 1 891-1 898.
[3] LAMOTHE L M, SRICHUWONG S, REUHS B L, et al. Quinoa(Chenopodium quinoa W.)and amaranth (Amaranthus caudatus L.)provide dietary fibers high in pectic substances and xyloglucans [J]. Food, 2015, 167(1): 490-496.
[4] MAHA M Ibrahim, WALEED K El-Zawawy, YVONNE Jüttke, et al. Cellulose and microcrystalline cellulose from rice straw and banana plant waste: preparation and characterization[J]. Cellulose, 2013, 20(5): 2 403-2 416.
[5] 张晓臣, 李鹏, 谢洋, 等. 利用落叶松残渣制备微晶纤维素[J]. 生物技术, 2013, 23(6): 100-102.
[6] 李金宝, 张美云, 刘银山, 等. 合成革用麦草微晶纤维素的制备及其表征[J]. 功能材料, 2014, 42(9): 1 606-1 609.
[7] 李金宝, 贺行, 张美云, 等. 金属离子催化纤维素水解制备微晶纤维素的研究[J]. 造纸科学与技术, 2014, 33(2): 21-24.
[8] 李小红, 黄薇薇, 王润东, 等. 甘蔗渣微晶纤维素制备及其性能研究[J]. 中国食品添加剂, 2017(11): 58-63.
[9] 任海伟, 沈佳莉, 朱晓倩, 等. 菊芋秸秆制备微晶纤维素的工艺优化及结构表征[J]. 中国食品学报, 2018, 18(1): 119-127.
[10] 张文龙, 赵文龙, 戴亚杰. 芦苇浆粕预处理方法对其微晶纤维素特性的影响[J]. 哈尔滨理工大学学报, 2015, 20(3): 72-77.
[11] 施欢贤, 张严磊, 宋忠兴, 等. 石榴废弃物为资源制备微晶纤维素及膳食纤维工艺研究[J]. 纤维素科学与技术, 2016, 24(2): 52-59.
[12] 姚红娟, 刘秀河, 王君. 响应面试验优化芦笋茎秆微晶纤维素的制备工艺[J]. 食品工业, 2017, 38(4): 48-52.
[13] 盛文军, 毕阳, 冯丽丹, 等. 沙棘渣制备微晶纤维素的酶解条件优化[J]. 食品科学, 2017, 38(20): 154-160.
[14] 张继, 马君义, 姚健, 等. 黑沙蒿资源的综合开发利用研究[J]. 中国野生植物资源, 2003, 22(1): 27-29.
[15] 肖斌, 白娟娟, 戚磊, 等. 黑沙蒿的资源分布、化学成分及药理活性研究进展[J]. 中国药房, 2016, 27(13): 1 682-1 684.
[16] 刘敦华, 谷文英. 沙蒿胶热稳定性的研究[J]. 食品工业科技, 2006, 27(4): 159-161.
[17] 赵东保, 杨玉霞, 张卫, 等. 黑沙蒿黄酮类化学成分研究[J]. 中国中药杂志, 2005, 30(18): 1 430-1 432.
[18] 张军红, 侯新. 毛乌素沙地油蒿植冠下土壤粒径特征及其影响因素分析[J]. 中国农业科技导报, 2018, 20(1): 95-102.
[19] 马文平, 纳鹏, 蔡同一, 等. 沙蒿籽油的氧化稳定性研究[J]. 食品科学, 2004, 25(1): 59-62.
[20] 刘洋, 沈星意, 苏盼杰, 等. 车前草膳食纤维的制备及理化性质研究[J]. 食品工业, 2017, 38(7): 156-158.
[21] 周纪芗. 实用回归分析方法[M]. 上海: 上海科学技术出版社, 1990: 77-79.
[22] 王立华, 王永利. 秸秆纤维素提取方法比较研究[J]. 中国农学通报, 2013, 29(20): 130-134.
[23] PURI V P. Effect of crystallinity and degree of polymerization of cellulose on enzymatic saccharification [J]. Biotechnology and Bioengineering, 1984, 26(10): 1 219-1 222.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.