Abstract
This review clarified the microbial origin and properties of thermophilic α-amylase, and analyzed eight factors affecting their thermostability. The strategies to improve the thermostability of thermophilic α-amylase were proposed, which provided a reference for improving the thermostability technology of thermophilic α-amylase.
Publication Date
9-28-2018
First Page
6
Last Page
10
DOI
10.13652/j.issn.1003-5788.2018.09.002
Recommended Citation
Caiming, LI; Shuangdi, CHEN; Zhengbiao, GU; Yan, HONG; Li, CHENG; and Zhaofeng, LI
(2018)
"Determinants factors and the strategies of improving thermostability of thermophilic α-amylase,"
Food and Machinery: Vol. 34:
Iss.
9, Article 2.
DOI: 10.13652/j.issn.1003-5788.2018.09.002
Available at:
https://www.ifoodmm.cn/journal/vol34/iss9/2
References
[1] 岳寿松, 边斐, 代运章, 等. 产蛋白酶和淀粉酶芽孢杆菌SDYB-1的分子鉴定及酶学性能研究[J]. 山东农业科学, 2015, 47(11): 54-59.
[2] TAWIL G, VIKS-NIELSEN A, ROLLAND-SABAT A, et al. Hydrolysis of concentrated raw starch: A new very efficient α-amylase from Anoxybacillus flavothermus[J]. Carbohydrate Polymers, 2012, 87(1): 46-52.
[3] AHMADI-ABHARI S, WOORTMAN A J J, OUDHUIS A A C M, et al. The influence of amylose-LPC complex formation on the susceptibility of wheat starch to amylase[J]. Carbohydrate Polymers, 2013, 97(2): 436-440.
[4] SUNDARRAM A. Α-amylase production and applications: A review[J]. Journal of Applied & Environmental Microbiology, 2014, 2(4): 166-175.
[5] ALI I, AKBAR A, ANWAR M, et al. Purification and characterization of a polyextremophilic α-amylase from an obligate halophilic Aspergillus penicillioides isolate and its potential for souse with detergents[J]. Biomed Research International, 2015, DOI: 10.1155/2015/245649.
[6] KUMAR N M, KARTHIKEYAN S, JAYARAMAN G. Thermostable alpha-amylase enzyme production from Bacillus laterosporus: Statistical optimization, purification and characterization[J]. Biocatalysis & Agricultural Biotechnology, 2013, 2(1): 38-44.
[7] SIDDIQUE F, HUSSAIN I, MAHMOOD M S, et al. Isolation and characterization of a highly thermostable alpha-amylase enzyme produced by Bacillus licheniformis[J]. Pakistan Journal of Agricultural Sciences, 2014, 51(2): 309-314.
[8] WU Xiang-rong, WANG Yu-xia, TONG Ben-ding, et al. Purification and biochemical characterization of a thermostable and acid-stable alpha-amylase from Bacillus licheniformis B4-423[J]. International Journal of Biological Macromolecules, 2017, 109: 329-337.
[9] JANA M, MAITY C, SAMANTA S, et al. Salt-independent thermophilic α-amylase from Bacillus megaterium VUMB109: An efficacy testing for preparation of maltooligosaccharides[J]. Industrial Crops & Products, 2013, 41(1): 386-391.
[10] XIE Fu-hong, QUAN Shu-jing, LIU De-hai, et al. Purification and characterization of a novel α-amylase from a newly isolated Bacillus methylotrophicus strain P11-2[J]. Process Biochemistry, 2014, 49(1): 47-53.
[11] EMTENANI S, ASOODEH A, EMTENANI S. Gene cloning and characterization of a thermostable organic-tolerant α-amylase from Bacillus subtilis DR8806[J]. International Journal of Biological Macromolecules, 2015, 72: 290-298.
[12] LIN Yun, LIN Juan, WANG Guo-zeng, et al. Cloning, expression and characterization of the thermostable alpha-amylase gene from Geobacillus sp.WQJ-1 isolated from hot springs[J]. Journal of Fuzhou University, 2018, 46(1): 143-150.
[13] JIANG Tao, CAI Meng-hao, HUANG Meng-meng, et al. Characterization of a thermostable raw-starch hydrolyzing α-amylase from deep-sea thermophile Geobacillus sp.[J]. Protein Expression and Purification, 2015, 114: 15-22.
[14] MEHTA D, SATYANARAYANA T. Biochemical and molecular characterization of recombinant acidic and thermostable raw-starch hydrolysing α-amylase from an extreme thermophile Geobacillus thermoleovorans[J]. Journal of Molecular Catalysis B: Enzymatic, 2013, 85-86: 229-238.
[15] SHUKLA R J, SINGH S P. Characteristics and thermodyna-mics of α-amylase from thermophilic actinobacterium, Laceye-lla sacchari TSI-2[J]. Process Biochemistry, 2015, 50(12): 2 128-2 136.
[16] JUNG J-H, SEO D-H, HOLDEN J F, et al. Maltose-forming α-amylase from the hyperthermophilic archaeon Pyrococcus sp. ST04[J]. Applied Microbiology and Biotechnology, 2014, 98(5): 2 121-2 131.
[17] GOMES I, GOMES J, STEINER W. Highly thermostable amylase and pullulanase of the extreme thermophilic eubacterium Rhodothermus marinus: Production and partial characterization[J]. Bioresource Technology, 2003, 90(2): 207-214.
[18] AQUINO A, JORGE J A, TERENZI H F, et al. Studies on a thermostable alpha-amylase from the thermophilic fungus Scytalidium thermophilum[J]. Applied Microbiology and Biotechnology, 2003, 61(4): 323-328.
[19] JEON E-J, JUNG J-H, SEO D-H, et al. Bioinformatic and biochemical analysis of a novel maltose-forming α-amylase of the GH57 family in the hyperthermophilic archaeon Thermococcus sp. CL1[J]. Enzyme and Microbial Technology, 2014, 60: 9-15.
[20] DENG Zhuang-mei, YANG Hai-quan, LI Jiang-hua, et al. Structure-based engineering of alkaline α-amylase from alkalip-hilic Alkalimonas amylolytica for improved thermostability[J]. Applied Microbiology & Biotechnology, 2014, 98(9): 3 997-4 007.
[21] 邓壮梅. 分子改造提高碱性淀粉酶热稳定性[D]. 无锡: 江南大学, 2014.
[22] DING Yan-rui, CAI Yu-jie, XU Wen-bo. The study on the relationship between hydrogen bond and protein thermostability[J]. Computers & Applied Chemistry, 2007, 24(5): 641-644.
[23] BEN M S, AYADI D Z, BEN H H, et al. Thermostability improvement of maltogenic amylase MAUS149 by error prone PCR[J]. Journal of Biotechnology, 2013, 168(4): 601-606.
[24] 曾静, 郭建军, 顾斌涛, 等. Ca2+结合位点对极端嗜热α-淀粉酶ApkA高温活性及热稳定性的影响[J]. 现代食品科技, 2016(8): 90-95.
[25] LI Zhu, DUAN Xu-guo, WU Jing. Improving the thermostability and enhancing the Ca2+ binding of the maltohexaose-forming α-amylase from Bacillus stearothermophilus[J]. Journal of Biotechnology, 2016, 222: 65-72.
[26] HARADA K. Crystal structure of α-amylase from: Molecular insights into enzyme activity and thermostability[J]. Bioscience, Biotechnology, and Biochemistry, 2014, 78(6): 989-997.
[27] KHAJEH K, SHOKRI M M, ASGHARI S M, et al. Acidic and proteolytic digestion of α-amylases from Bacillus licheniformis and Bacillus amyloliquefaciens: Stability and flexibility analysis[J]. Enzyme & Microbial Technology, 2006, 38(3): 422-428.
[28] YADAV J K. A differential behavior of α-amylase, in terms of catalytic activity and thermal stability, in response to higher concentration CaCl2[J]. International Journal of Biological Macromolecules, 2012, 51(1): 146-152.
[29] LI C, LI W, HOLLER T P, et al. Polyethylene glycols enhance the thermostability of β-cyclodextrin glycosyltrans-ferase from Bacillus circulans[J]. Food Chemistry, 2014, 164: 17-22.
[30] YOON S H, ROBYT J F. Activation and stabilization of 10 starch-degrading enzymes by triton X-100, polyethylene glycols, and polyvinyl alcohols[J]. Enzyme and Microbial Technology, 2005, 37(5): 556-562.
[31] MAALEJ H, HMIDET N, GHORBEL-BELLAAJ O, et al. Purification and biochemical characterization of a detergent stable α-amylase from Pseudomonas stutzeri AS22[J]. Biotechnology and Bioprocess Engineering, 2013, 18(5): 878-887.
[32] ISMAYA W T, HASAN K, KARDI I, et al. Chemical modification of Saccharomycopsis fibuligera R64 alpha-amylase to improve its stability against thermal, chelator, and proteolytic inactivation[J]. Applied Biochemistry and Biotechnology, 2013, 170(1): 44-57.
[33] 冯旭东, 吕波, 李春. 酶分子稳定性改造研究进展[J]. 化工学报, 2016, 67(1): 277-284.
[34] 郑璐. 海藻酸钠固定化α-淀粉酶的研究[D]. 武汉: 华中农业大学, 2013: 2-4.
[35] 王华, 王莹, 詹长娟, 等. 壳聚糖小球共价固定化α-淀粉酶的研究[J]. 食品工业, 2015, 36(2): 129-132.
[36] DEFAEI M, TAHERI-KAFRANI A, MIROLIAEI M, et al. Improvement of stability and reusability of α-amylase immobilized on naringin functionalized magnetic nanoparticles: A robust nanobiocatalyst[J]. International Journal of Biological Macromolecules, 2018, 113(1): 354-360.
[37] 魏涛, 孙浩, 申玉龙, 等. Sulfolobus tokodaii strain 7高温酸性α-淀粉酶基因在大肠杆菌中克隆表达及其酶学性质[J]. 食品与发酵工业, 2013, 39(5): 13-17.
[38] 曾静, 郭建军, 袁林. 定点突变提高极端嗜热α-淀粉酶ApkA的高温活性和热稳定性[J]. 食品科学, 2017, 38(2): 20-26.
[39] LI Zhu, DUAN Xu-guo, CHEN Sheng, et al. Improving the reversibility of thermal denaturation and catalytic efficiency of Bacillus licheniformis α-amylase through stabilizing a long loop in domain B[J]. Plos One, 2017, 12(3): e0 173 187.
[40] ZHU Wei-hua, CAO Yi, LI Wei, et al. The error-prone pcr of α-amylase from Bacillus amyloliquefaciens toward enhanced acid tolerance and higher specific activity[J]. Journal of Pure & Applied Microbiology, 2013, 7(3): 1 489-1 496.
[41] XU Yan-jing, LIU Yi-han, FAN Shuai, et al. Enhancement of acid stability of alpha amylase from Bacillus licheniformis by error-prone PCR[J]. Advanced Materials Research, 2013, 774-776: 664-669.