Abstract
The paper describes the luminescent bacteria and the mechanism of detecting toxic and harmful substances. This paper reviews the recent advances in the application of luminescent bacteria in toxicity assessment and food safety testing. What’s more, the factors influencing the application of luminescent bacteria in food safety testing are pointed out, and the paper indicates the application research direction in this technical field.
Publication Date
9-28-2018
First Page
179
Last Page
184
DOI
10.13652/j.issn.1003-5788.2018.09.036
Recommended Citation
Xinying, HU; Zhifei, HE; and Hongjun, LI
(2018)
"Research progress of the detection mechanism of luminescent bacterial toxicity and its application,"
Food and Machinery: Vol. 34:
Iss.
9, Article 36.
DOI: 10.13652/j.issn.1003-5788.2018.09.036
Available at:
https://www.ifoodmm.cn/journal/vol34/iss9/36
References
[1] GOMES J O, BORGES N W, MACHADO A E, et al. Optimization of fipronil degradation by heterogeneous photocatalysis: Identification of transformation products and toxicity assessment[J]. Water Research, 2017, 110: 133-140.
[2] LE T X H, NGUYEN T V, YACOUBA Z A, et al. Correlation between degradation pathway and toxicity of acetaminophen and its by-products by using the electro-Fenton process in aqueous media[J]. Chemosphere, 2017, 172: 1-9.
[3] JIA K, IONESCU R E. Measurement of bacterial bioluminescence intensity and spectrum: current physical techniques and principles[J]. Advances in Biochemical Engineering/Biotechnology, 2016, 154: 19-45.
[4] CHEN Season S, SUN Yu-qing, TSANG D C W, et al. Potential impact of flowback water from hydraulic fracturing on agricultural soil quality: Metal/metalloid bioaccessibility, Microtox bioassay, and enzyme activities[J]. Science of the Total Environment, 2016, 579: 1 419-1 426.
[5] KUDRYASHEVA N S, TARASOVA A S. Pollutant toxicity and detoxification by humic substances: mechanisms and quantitative assessment via luminescent biomonitoring[J]. Environmental Science & Pollution Research International, 2015, 22(1): 155-167.
[6] KUZNETSOV A M, RODICHEVA E K, MEDVEDEVA S E, et al. Bioluminescent bioassays based on luminous bacteria marker system[C]// Bioluminescence and Chemiluminescence-Progress and Current Applications, International Symposium on Bioluminescence. [S.l.]: Journal of Siberian Federal University, 2017: 323-326.
[7] ABBAS M, ADIL M, EHTISHAM-UL-HAQUE S, et al. Vibrio fischeri bioluminescence inhibition assay for ecotoxicity assessment: A review[J]. Science of the Total Environment, 2018, 626: 1 295-1 309.
[8] GRABERT E, KOSSLER F. About the effects of nutrients on the luminescent bacteria test[J]. Journal of Bioluminescence & Chemiluminescence, 1997: 291-294.
[9] JIAN Qi-jie, GONG Liang, LI Tao-tao, et al. Rapid assessment of the toxicity of fungal compounds using luminescent vibrio qinghaiensis sp. Q67[J]. Toxins, 2017, 9(10): 335-347.
[10] BOLELLI L, FERRI E N, GIROTTI S. The management and exploitation of naturally light-emitting bacteria as a flexible analytical tool: A tutorial[J]. Analytica Chimica Acta, 2016, 934: 22-35.
[11] PIVATO A, GASPARI L. Acute toxicity test of leachates from traditional and sustainable landfills using luminescent bacteria[J]. Waste Management, 2006, 26(10): 1 148-1 155.
[12] 朱文杰. 发光细菌与环境毒性检测[M]. 北京: 中国轻工业出版社, 2009: 25-37.
[13] LEON M B, ALBRECHT J A. Comparison of adenosine triphosphate (ATP) bioluminescence and aerobic plate counts (APC) on plastic cutting boards[J]. Journal of Foodservice, 2007, 18(4): 145-152.
[14] BERGNER T, TABIB C R, WINKLER A, et al. Structural and biochemical properties of LuxF from Photobacterium leiognathi[J]. Biochimica et Biophysica Acta, 2015, 1 854(10): 1 466-1 475.
[15] SHARIFIAN S, HOMAEI A, HEMMATI R, et al. Light emission miracle in the sea and preeminent applications of bioluminescence in recent new biotechnology[J]. Journal of Photochemistry & Photobiology B Biology, 2017, 172: 115-128.
[16] MARTINI S, ALI B A, GAREL M, et al. Effects of hydrostatic pressure on growth and luminescence of a moderately-piezophilic luminous bacteria photobacterium phosphoreum ANT-2200[J]. Plos One, 2013, 8(6): e66 580.
[17] NIJVIPAKUL S, WONGRATANA J, SUADEE C, et al. LuxG is a functioning flavin reductase for bacterial luminescen-ce[J]. Journal of Bacteriology, 2008, 190(5): 1 531-1 538.
[18] LEWIS J C, FELTUS A, ENSOR C M, et al. Peer reviewed: applications of reporter genes[J]. Anal Chemi, 2011, 70(17): 579-585.
[19] BELKIN S. Microbial whole-cell sensing systems of environmental pollutants[J]. Current Opinion in Microbiology, 2003, 6(3): 206-212.
[20] THOMULKA K W, MCGEE D J, LANGE J H. Use of the bioluminescent bacterium Photobacterium phosphoreum, to detect potentially biohazardous materials in water[J]. Bulletin of Environmental Contamination & Toxicology, 1993, 51(4): 538-544.
[21] KRATASYUK V A, ESIMBEKOVA E N. Applications of luminous bacteria enzymes in toxicology[J]. Combinatorial Chemistry & High Throughput Screening, 2015, 18(10): 952-959.
[22] FERNNDEZPIAS F, RODEAPALOMARES I, LEGANS F, et al. Evaluation of the ecotoxicity of pollutants with bioluminescent microorganisms[J]. Advances in Biochemical Engineering/Biotechnology, 2014, 145: 65-135.
[23] 袁媛, 邱霞. 急性毒性试验研究进展[J]. 海军医学杂志, 2013, 34(5): 360-360.
[24] 谭剑斌. 体内外替代方法在急性毒性评价中的研究进展[J]. 毒理学杂志, 2010, 24(6): 479-482.
[25] RIEBELING C, LUCH A, TRALAU T. Skin toxicology and 3Rs-current challenges for public health protection[J]. Experimental Dermatology, 2018, 27(5): 526-536.
[26] SEWELL F, RAGAN I, MARCZYLO T, et al. A global initiative to refine acute inhalation studies through the use of ‘evident toxicity’ as an endpoint: Towards adoption of the fixed concentration procedure[J]. Regulatory Toxicology & Pharmacology Rtp, 2015, 73(3): 770-779.
[27] DIENER W. Biometric evaluation of the ATC method for the determination of the acute dermal toxicity of chemicals[J]. Biometrical Journal, 2015, 40(8): 979-991.
[28] PRICE R L, MURPHY M J, SQUIRRELL D J, et al. Rapid detection of food-borne bacteria using bacteriophage and ak bioluminescence[C]// Bioluminescence and Chemiluminescence, International Symposium. [S.l.]: Bioluminescence and Chemiluminescence, 2014: 301-304.
[29] CHEN Wen-yan, CAI Qiang, ZHAO Yuan, et al. Toxicity evaluation of pig slurry using luminescent bacteria and zebrafish[J]. International Journal of Environmental Research and Public Health, 2014, 11(7): 6 856-6 870.
[30] CAI Yu-hang, LI Juan, ZHAO Wen-jin, et al. Single toxicity and QSAR-assistant toxic mechanisms of pesticides (dimethoate, malathion, atrazine, prometryn and acetochlor) to photobacterium phosphoreum in the sediment lixivium[J]. Asian Journal of Chemistry, 2015, 27(2): 569-574.
[31] 石颖, 丁武, 张志超, 等. 应用青海弧菌评价常见8种兽药的急性毒性[J]. 西北农业学报, 2012, 21(6): 17-21.
[32] 吴淑杭. 发光细菌法快速检测农产品中主要污染物联合毒性技术研究[D]. 上海: 华东师范大学, 2007: 8-10.
[33] NEALE P A, LEUSCH F D, ESCHER B I. Applying mixture toxicity modelling to predict bacterial bioluminescence inhibition by non-specifically acting pharmaceuticals and specifically acting antibiotics[J]. Chemosphere, 2017, 173: 387-394.
[34] 孔令云, 田大勇, 石恬恬, 等. 混合化合物联合毒性研究进展[J]. 中国科技论文, 2014, 9(6): 663-668.
[35] 张瑾, 刘树深, 邓慧萍, 等. 吡啶类离子液体对青海弧菌Q67的混合毒性评估[J]. 生态毒理学报, 2013, 8(6): 955-962.
[36] 董玉瑛, 邹学军, 陈峥, 等. 三种药品联合毒性作用及其环境风险分析[J]. 环境化学, 2013, 32(7): 1 257-1 262.
[37] 袁东星, 邓永智, 林玉晖. 蔬菜中有机磷农药残留的发光菌快速检测[J]. 环境化学, 1997, 16(1): 77-81.
[38] 朱兰兰, 林洪, 王静雪, 等. 利用发光细菌进行褐牙鲆中氯霉素残留快速检测的研究[J]. 食品与发酵工业, 2007, 33(10): 155-159.
[39] 张国辉, 赵吉, 邵玉琴, 等. 发光弧菌快速检测液态奶中的三聚氰胺[J]. 食品科学, 2010, 31(6): 145-147.
[40] PELLINEN T, BYLUND G, VIRTA M, et al. Detection of traces of tetracyclines from fish with a bioluminescent sensor strain incorporating bacterial luciferase reporter genes[J]. Journal of Agricultural & Food Chemistry, 2002, 50(17): 4 812-4 815.
[41] PIKKEMAAT M G, RAPALLINI M L B A, KARP M T, et al. Application of a luminescent bacterial biosensor for the detection of tetracyclines in routine analysis of poultry muscle samples[J]. Food Additives & Contaminants Part A Chemistry Analysis Control Exposure & Risk Assessment, 2010, 27(8): 1 112-1 117.
[42] 石颖. 发光细菌快速检测畜产品中兽药残留研究[D]. 杨凌: 西北农林科技大学, 2012: 13-23.
[43] CHEN Wen-yan, CAI Qiang, ZHAO Yuan, et al. Toxicity evaluation of pig slurry using luminescent bacteria and zebrafish[J]. International Journal of Environmental Research & Public Health, 2014, 11(7): 6 856-6 870.
[44] 何早, 吴卫国, 胡雨欣, 等. 发光细菌法检测大米中的重金属[J]. 粮食与油脂, 2016, 29(5): 63-66.
[45] 段效辉, 王颖, 曹鹏, 等. 发光细菌在水产品安全中的应用研究进展[J]. 化学与生物工程, 2016, 33(10): 8-11.
[46] CUI Zhi-song, LUAN Xiao, JIANG Hui-chao, et al. Application of a bacterial whole cell biosensor for the rapid detection of cytotoxicity in heavy metal contaminated seawater[J]. Chemosphere, 2018, 200: 322-329.
[47] VIROLAINEN N E, PIKKEMAAT M G, ELFERINK J W, et al. Rapid detection of tetracyclines and their 4-epimer derivatives from poultry meat with bioluminescent biosensor bacteria[J]. Journal of Agricultural and Food Chemistry, 2008, 56(23): 11 065-11 070.
[48] 石颖, 丁武. 利用发光细菌检测猪肉中的兽药残留[J]. 西北农业学报, 2016, 25(9): 1 420-1 426.
[49] SMITAL T, TERZIC S, ZAJA R, et al. Assessment of toxicological profiles of the municipal wastewater effluents using chemical analyses and bioassays[J]. Ecotoxicology and Environmental Safety, 2011, 74(4): 844-851.
[50] CALABRESE E J, BALDWIN L A. Hormesis: the dose-response revolution[J]. Annual Review of Pharmacology and Toxicology, 2003, 43(1): 175-197.
[51] CHAPMAN P M. The implications of hormesis to ecotoxicology and ecological risk assessment[J]. Human & Experimental Toxicology, 2001, 20(10): 499-505.
[52] MORSE J G. Agricultural implications of pesticide-induced hormesis of insects and mites[J]. Human & Experimental Toxicology, 1998, 17(5): 266-269.
[53] 汤淼, 曾鸿鹄, 王大力, 等. 四环素对费氏弧菌产生生毒物兴奋效应(Hormesis)的时间关系和机制[J]. 环境化学, 2015, 34(11): 1 981-1 987.
[54] SHEN Kai-li, SHEN Chao-feng, LU Yuan, et al. Hormesis response of marine and freshwater luminescent bacteria to metal exposure[J]. Biological Research, 2009, 42(2): 183-187.
[55] MA Xiao-yan, WANG Xiao-chang, NGO H H, et al. Bioassay based luminescent bacteria: interferences, improvements, and applications[J]. Science of the Total Environment, 2014, 468: 1-11.
[56] GAO Ya, LIN Zhi-fen, CHEN Rui, et al. Using molecular docking to compare toxicity of reactive chemicals to freshwater and marine luminous bacteria[J]. Qsar & Combinatorial Science, 2012, 31(11/12): 809-816.