Abstract
The spoilage of aquatic products is mainly caused by microbial activities. In this paper, the Specific Spoilage Organisms (SSO) in aquatic products, Quorum Sensing (QS) signal of microbial molecules, the resource and function methods of QS inhibitors were described, respectively. The existing problems and solutions of current QS inhibitors from plant were proposed as well so as to provide the theoretical reference for the research of preservatives for controlling the QS in aquatic products.
Publication Date
9-28-2018
First Page
185
Last Page
190
DOI
10.13652/j.issn.1003-5788.2018.09.037
Recommended Citation
Weiqing, LAN; Meng, WANG; Mengling, CHEN; and Jing, XIE
(2018)
"Research progress of specific spoilage organisms quorum sensing and plant-source inhibitors in aquatic products,"
Food and Machinery: Vol. 34:
Iss.
9, Article 37.
DOI: 10.13652/j.issn.1003-5788.2018.09.037
Available at:
https://www.ifoodmm.cn/journal/vol34/iss9/37
References
[1] 王倩, 孙晓红, 蓝蔚青, 等. 保鲜冰在水产品保藏中的应用研究进展[J]. 食品与机械, 2016, 32(3): 226-230.
[2] GRAM L, HUSS H H. Microbiological spoilage of fish and fish products[J]. International Journal of Food Microbiology, 1996, 33(1): 121-137.
[3] JIANG Qian-qian, DAI Zhi-yuan, ZHOU Tao, et al. Histamine production and bacterial growth in mackerel (pneumatophorus japonicus) during storage[J]. Journal of Food Biochemistry, 2013, 37(2): 246-253.
[4] 王航. 草鱼贮藏过程中品质变化规律及特定腐败菌的研究[D]. 北京: 中国农业大学, 2016: 2-8.
[5] 李琳, 潘子强. 水产品特定腐败菌的确定及生长模型建立研究进展[J]. 食品研究与开发, 2011, 32(6): 152-156.
[6] LIU M, GRAY J M, GRIFFITHS M W. Occurrence of proteolytic activity and N-acyl-homoserine lactone signals in the spoilage of aerobically chill-stored proteinaceous raw foods[J]. Journal of Food Protection, 2006, 69(11): 2 729-2 737.
[7] WEVERS E, MOONS P, HOUDT R V, et al. Quorum sensing and butanediol fermentation affect colonization and spoilage of carrot slices by Serratia plymuthica[J]. International Journal of Food Microbiology, 2009, 134(1/2): 63-69.
[8] SKANDAMIS P N, NYCHAS G J E. Quorum sensing in the context of food microbiology[J]. Applied and Environmental Microbiology, 2012, 78(16): 5 473-5 482.
[9] HAWVER L A, JUNG S A, NG W L. Specificity and complexity in bacterial quorum-sensing systems[J]. FEMS Microbiology Reviews, 2016, 40(5): 738-752.
[10] JIANG Tian-yu, LI Min-yong. Quorum sensing inhibitors: a patent review[J]. Expert Opinion on Therapeutic Patents, 2013, 23(7): 867-894.
[11] FUQUA W C, WINANS S C, GREENBERG E P. Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators[J]. Journal of Bacteriology, 1994, 176(2): 269-275.
[12] RAN Tao, ZHOU Chuan-she, XU Li-wei, et al. Initial detection of the quorum sensing autoinducer activity in the rumen of goats in vivo and in vitro[J]. Journal of Integrative Agriculture, 2016, 15(10): 2 343-2 352.
[13] BAKARAKI N, CHORMEY D S, BAKIRDERE S, et al. Development of a sensitive liquid-liquid extraction method for the determination of N-butyryl-l-homoserine lactone produced in a submerged membrane bioreactor by gas chromatography mass spectrometry and deuterated anthracene as the internal standard[J]. Analytical Methods, 2016, 8(12): 2 660-2 665.
[14] ASAD S, OPAL S M. Bench-to-bedside review: Quorum sensing and the role of cell-to-cell communication during invasive bacterial infection[J]. Critical Care, 2008, 12(6): 236-246.
[15] WHITEHEAD N A, BARNARD A M, SLATER H, et al. Quorum-sensing in gram-negative bacteria[J]. FEMS Microbiology Reviews, 2001, 25(4): 365-404.
[16] CHOUDHARY S, SCHMIDT-DANNERT C. Applications of quorum sensing in biotechnology[J]. Applied Microbiology and Biotechnology, 2010, 86(5): 1 267-1 279.
[17] SWEM L R, SWEM D L, WINGREEN N S, et al. Deducing receptor signaling parameters from in vivo analysis: LuxN/AI-1 quorum sensing in Vibrio harveyi[J]. Cell, 2008, 134(3): 461-473.
[18] DEFOIRDT T. Quorum-sensing systems as targets for antivirulence therapy[J]. Trends in Microbiology, 2017, 28(4): 313-328.
[19] LEE J, ZHANG Lian-hui. The hierarchy quorum sensing network in Pseudomonas aeruginosa[J]. Protein and Cell, 2015, 6(1): 26-41.
[20] DEFOIRDT T, PANDE G S J, BARUAH K, et al. The apparent quorum-sensing inhibitory activity of pyrogallol Is a side effect of peroxide production[J]. Antimicrobial Agents and Chemotherapy, 2013, 57(6): 2 870-2 873.
[21] KALAIARASAN E, KOTTHA T, HARISH B N, et al. Inhibition of quorum sensing-controlled biofilm formation in pseudomonas aeruginosa by quorum-sensing inhibitors[J]. Microbial Pathogenesis, 2017, 111: 99-107.
[22] HAN Xian-gan, LIU Lei, FAN Guo-bo, et al. Riemerella anatipestifer lacks luxS, but can uptake exogenous autoinducer-2 to regulate biofilm formation[J]. Research in Microbiology, 2015, 166(6): 486-493.
[23] WANG Yang, YI Li, ZHANG Zhi-cheng, et al. Overexpress-ion of luxS cannot increase autoinducer-2 production, only affect the growth and biofilm formation in streptococcus suis[J]. The Scientific World Journal, 2013, 2013(2): 924 276-924 285.
[24] NICHOLS J D, JOHNSON M R, CHOU C J, et al. Temperature, not LuxS, mediates AI-2 formation in hydrothermal habitats[J]. FEMS Microbiology Ecology, 2009, 68(2): 173-181.
[25] ADLER L, ALTER T, SHARBATI S, et al. Thesignalling molecule autoinducer-2 is not internalized in campylobacter jejuni[J]. Berliner Und Münchener Tierrztliche Wochensch-rift, 2015, 128(3/4): 111-116.
[26] MANDABI A, GANIN H, MEIJLER M M. Synergistic activation of quorum sensing in Vibrio harveyi[J]. Bioorganic and Medicinal Chemistry Letters, 2015, 25(18): 3 966-3 969.
[27] GU Qing-qing, FU Ling-lin, WANG Yan-bo, et al. Identification and characterization of extracellular cyclic dipeptides as quorum-sensing signal molecules from shewanella baltica, the specific spoilage organism of pseudosciaena crocea during 4 ℃ storage[J]. Journal of Agricultural and Food Chemistry, 2013, 61(47): 11 645-11 652.
[28] DEGRASSI G, AGUILAR C, BOSCO M, et al. Plant growth-promoting Pseudomonas putida WCS358 produces and secretes four cyclic dipeptides: cross-talk with quorum sensing bacterial sensors[J]. Current Microbiology, 2002, 45(4): 250-254.
[29] ZHU Su-qin, WU Hao-hao, ZENG Ming-yong, et al. The involvement of bacterial quorum sensing in the spoilage of refrigerated litopenaeus vannamei[J]. International Journal of Food Microbiology, 2015, 192: 26-33.
[30] 赵爱飞, 黄旭镇, 叶晓锋, 等. 气相色谱-质谱定量检测水产品腐败菌群体感应 DKPs 信号分子[J]. 微生物学通报, 2016, 43(2): 343-350.
[31] ZHU Jun-li, ZHAO Ai-fei, FENG Li-fang, et al. Quorum sensing signals affect spoilage of refrigerated large yellow croaker (Pseudosciaena crocea) by Shewanella baltica[J]. International Journal of Food Microbiology, 2016, 217: 146-155.
[32] TOMMONARO G, ABBAMONDI G R, IODICE C, et al. Diketopiperazines produced by the halophilic archaeon, Haloterrigena hispanica, activate AHL bioreporters[J]. Microbial Ecology, 2012, 63(3): 490-495.
[33] 励建荣, 杨兵, 李婷婷. 水产品优势腐败菌及其群体感应系统研究进展[J]. 食品科学, 2015, 36(19): 255-259.
[34] PARKER C T, SPERANDIO V. Cell-to-cellsignalling during pathogenesis[J]. Cell Microbiology, 2008, 11(3): 363-369.
[35] POMERANTSEV A P, POMERANTSEVA O M, CAMP A S, et al. Papr peptide maturation: role of the NprB protease in Bacillus cereus 569 PlcR/PapR global gene regulation[J]. FEMS Immunology and Medical Microbiology, 2009, 55(3): 361-377.
[36] 邬慧颖, 韩雪, 张丽娟, 等. 群体感应系统及其在乳酸菌生物膜形成中的作用[J]. 食品工业科技, 2018(1): 318-322.
[37] WALTERS M, SIRCILI M P, SPERANDIO V. AI-3 synthesis is not dependent on luxS in Escherichia coli[J]. Journal of Bacteriology, 2006, 188(16): 5 668-5 681.
[38] WILLIAMS P, CMARA M. Quorum sensing and environmental adaptation inPseudomonas aeruginosa: a tale of regulatory networks and multifunctional signal molecules[J]. Current Opinion in Microbiology, 2009, 12(2): 182-191.
[39] VIDUCIC D, MURAKAMI K, AMOH T, et al. Role of the interplay between quorum sensing regulator VqsR and the Pseudomonas quinolone signal in mediating carbapenem tolerance in Pseudomonas aeruginosa[J]. Research in Microbiology, 2017, 168(5): 450-460.
[40] DENG Yin-yue, WU Ji-en, TAO Fei, et al. Listening to a new language: DSF-based quorum sensing in gram-negative bacteria[J]. Chemical Reviews, 2011, 111(1): 160-173.
[41] RYAN R P, AN S Q, ALLAN J H, et al. The DSF family of cell-cell signals: an expanding class of bacterial virulence regulators[J]. Plos Pathogens, 2015, 11(7): 1-14.
[42] ZHOU Lian, ZHANG Lian-hui, CAMARA M, et al. The DSF family of quorum sensing signals: diversity, biosynthesis, and turnover[J]. Trends in Microbiology, 2016, 25(4): 293-303.
[43] SABAG-DAIGLE A, AHMER B M M. ExpI and PhzI are descendants of the long lost cognate signal synthase for SdiA[J]. Plos One, 2012, 7(10): 1-4.
[44] BRACKMAN G, HILLAERT U, VAN C S, et al. Use of quorum sensing inhibitors to interfere with biofilm formation and development in burkholderia multivorans and burkholderia cenocepacia[J]. Research in Microbiology, 2009, 160(2): 144-151.
[45] WONGSUK T, PUMEESAT P, LUPLERTLOP N. Fungal quorum sensing molecules: role in fungal morphogenesis andpathogenicity[J]. Journal of Basic Microbiology, 2016, 56(5): 440-447.
[46] PADDER S A, PRASAD R, SHAH A H. Quorum sensing: a less known mode of communication among fungi[J]. Microbiological Research, 2018, 210: 51-58.
[47] 曾惠, 董士远. 群体感应与水产品保藏新策略[J]. 肉类研究, 2010(9): 32-35.
[48] 马艳平, 梁志凌, 马江耀, 等. 细菌天然群体感应信号分子抑制剂研究进展[J]. 广东畜牧兽医科技, 2017, 42(1): 1-5.
[49] RASMUSSEN T B, GIVSKOV M. Quorum sensing inhibitors: a bargain of effects[J]. Microbiology, 2006, 152(Pt 4): 895-904.
[50] TRUCHADO P, LARROSA M, CASTRO-IBEZ I, et al. Plant food extracts and phytochemicals: Their role as Quorum Sensing Inhibitors[J]. Trends in Food Science & Technology, 2015, 43(2): 189-204.
[51] LE B R, FAURE K, NGUYEN S, et al. Quorum sensing: a new clinical target forPseudomonas aeruginosa[J]. Médecine Et Maladies Infectieuses, 2006, 36(7): 349-357.
[52] KONOPLEVA M N, KHRULNOVA S A, BARANOVA A, et al. A combination of luxR1 and luxR2 genes activates pr-promoters of psychrophilic Aliivibrio logei lux-operon independently of chaperonin GroEL/ES and protease Lon at high concentrations of autoinducer[J]. Biochemical and Biophysical Research Communications, 2016, 473 (4): 1 158-1 162.
[53] GUI Meng, WU Rui-yun, LIU Lei, et al. Effects of quorum quenching by AHL lactonase on AHLs, protease, motility and proteome patterns in Aeromonas veronii Lp-11[J]. International Journal of Food Microbiology, 2017, 252: 61-68.
[54] KIM J B, XIA Yu-rong, ROMANOSKI C E, et al. Paraoxonase-2 modulates stress response of endothelial cells to oxidized phospholipids and a bacterial quorum-sensing molecule[J]. Arteriosclerosis Thrombosis and Vascular Biology, 2011, 31(11): 2 624-2 633.
[55] HEIDARI A, NOSHIRANZADEH N, HAGHI F, et al. Inhibition of quorum sensing related virulence factors of Pseudomonas aeruginosa by pyridoxal lactohydrazone[J]. Microbial Pathogenesis, 2017, 112: 103-110.
[56] 王岩, 于雅萌, 张静静, 等. 海洋微生物群体感应与群体感应淬灭的开发利用[J]. 生物资源, 2017, 39(6): 413-422.
[57] VATTEM D A, MIHALIK K, CRIXELL S H, et al. Dietary phytochemicals as quorum sensing inhibitors[J]. Fitoterapia, 2007, 78(4): 302-310.
[58] SHARMA A, FLORES-VALLEJO R D C, CARDOSO-TAKETA A, et al. Antibacterial activities of medicinal plants used in mexican traditional medicine[J]. Journal of Ethnopharmacology, 2017, 6(2): 264-329.
[59] ZHOU Li-man, ZHENG Hong-da, TANG Yi-dan, et al. Eugenol inhibits quorum sensing at sub-inhibitory concentrations[J]. Biotechnology Letters, 2013, 35(4): 631-637.
[60] VIKRAM A, JESUDHASAN P R, JAYAPRAKASHA G K, et al. Citrus limonoids interfere with Vibrio harveyi cell-cell signaling and biofilm formation by modulating the response regulator LuxO[J]. Microbiology, 2011, 157(1): 99-110.
[61] BRACKMAN G, DEFOIRDT T, MIYAMOTO C, et al. Cinnamaldehyde and cinnamaldehyde derivatives reduce virulence in Vibrio spp. by decreasing the DNA-binding activity of the quorum sensing response regulator LuxR[J]. BMC Microbiology, 2008, 8(1): 149-162.
[62] VISVALINGAM J, PALANIAPPAN K, Holley R A. In vitro enhancement of antibiotic susceptibility of drug resistant Escherichia coli by cinnamaldehyde[J]. Food Control, 2017, 79: 288-291.
[63] TRUCHADO P, TOMS-BARBERN F A, LARROSA M, et al. Food phytochemicals act as quorum sensing inhibitors reducing production and/or degrading autoinducers of Yersinia enterocolitica and Erwinia carotovora[J]. Food Control, 2012, 24(1/2): 78-85.
[64] MYSZKA K, SCHMIDT M T, MAJCHER M, et al. Inhibition of quorum sensing-related biofilm of Pseudomonas fluorescens KM121 by Thymus vulgare essential oil and its major bioactive compounds[J]. International Biodeterioration and Biodegradation, 2016, 114: 252-259.
[65] BANERJEE M, MOULICK S, BHATTACHARYA K K, et al. Attenuation of pseudomonas aeruginosa quorum sensing, virulence and biofilm formation by extracts of andrographis paniculata[J]. Microbial Pathogenesis, 2017, 113: 85-93.
[66] LIU Zun-ying, PAN Yu-rong, LI Xiao-shuang, et al. Chemical composition, antimicrobial and anti-quorum sensing activities of pummelo peel flavonoid extract[J]. Industrial Crops and Products, 2017, 109: 862-868.
[67] LI Yu-zhe, ZHANG Xiao-peng, LIANG Chun-lai, et al. Safety evaluation of mulberry leaf extract: Acute, subacute toxicity and genotoxicity studies [J]. Regulatory Toxicology and Pharmacology, 2018, 95: 220-226.
[68] KALIA V C. Quorum sensing inhibitors: An overview[J]. Biotechnology Advance, 2013, 31(2): 224-245.
[69] JAKOBSEN T H, BRAGASON S K, PHIPPS R K, et al. Food as a source for quorum sensing inhibitors: iberin from horseradish revealed as a quorum sensing inhibitor of Pseudomonas aeruginosa[J]. Applied & Environmental Microbiology, 2012, 78(7): 2 410-2 421.
[70] RASCH M, RASMUSSEN T B, ANDERSEN J B, et al. Well-known quorum sensing inhibitors do not affect bacterial quorum sensing-regulated bean sprout spoilage[J]. Journal of Applied Microbiology, 2007, 102(3): 826-837.
[71] PUGACHEV M V, SHTYRLIN N V, SYSOEVA L P, et al. Synthesis and antibacterial activity of novel phosphonium salts on the basis of pyridoxine[J]. Bioorganic and Medicinal Chemistry, 2013, 21(14): 4 388-4 395.