Abstract
In this study, the crude rapeseed peptide was used as the research object. After treatment with powdered activated carbon, peptide solution was adsorbed onto DA201-C macroporous adsorption resin and then desorbed by ethanol to obtain rapeseed refined peptides (RP75). The basic composition, antithrombotic activity, anti-inflammatory activity and amino acid composition of rapeseed refined peptides (RP75) were also analyzed. The results showed that the optimum process for the refining of the DA201-C macroporous adsorption resin were peptide concentration 30 mg/mL, flow rate 3 BV/h, pH 4.5 and desorption concentration of the ethanol 75%. Peptide content was 74.94%, no glucosinolate or phytic acid was detected in RP75. On the other hand, RP75 contained rich amino acids and exhibited excellent bioactivities including anti-thrombotic and anti-inflammatory activities with IC50 values of 8.82 mg/mL and 0.80 mg/mL. These results indicated that RP75 could be used as a potential health promoting ingredient with functional activity.
Publication Date
1-28-2019
First Page
164
Last Page
169,212
DOI
10.13652/j.issn.1003-5788.2019.01.029
Recommended Citation
Yijun, YAO; Lifeng, WANG; Shi, YIN; Feiran, XU; Jiayi, SHI; and Xingrong, JU
(2019)
"Study on refining process and properties of rapeseed peptides,"
Food and Machinery: Vol. 35:
Iss.
1, Article 29.
DOI: 10.13652/j.issn.1003-5788.2019.01.029
Available at:
https://www.ifoodmm.cn/journal/vol35/iss1/29
References
[1] 王立峰, 袁建, 鞠兴荣, 等. 双低油菜籽油脂加工副产品的研究现状与发展趋势[J]. 中国油脂, 2005(9): 9-12.
[2] 董加宝, 张长贵, 王祯旭. 食用菜籽蛋白研究及应用[J]. 粮食与油脂, 2005(12): 11-13.
[3] 聂慎德. 菜籽肽制备及其抗氧化活性的研究[D]. 合肥: 合肥工业大学, 2009: 5-6.
[4] YU Wan-cong, GAO Jie, XUE Zhao-hui, et al. Radical-scavenging activity, ACE-inhibiting capability and identification of rapeseed albumin hydrolysate[J]. Food Science & Human Wellness, 2013, 2(2): 93-98.
[5] HE Rong, GIRGIH A, MALOMO S, et al. Antioxidant activities of enzymatic rapeseed protein hydrolysates and the membrane ultrafiltration fractions[J]. Journal of Functional Foods, 2013, 5(1): 219-227.
[6] ZHOU Cun-shan, YU Xiao-jie, QIN Xiao-pei, et al. Hydrolysis of rapeseed meal protein under simulated duodenum digestion: Kinetic modeling and antioxidant activity[J]. LWT-Food Science and Technology, 2016, 68: 523-531.
[7] HE Rong, GIRGIH A, ROZOY E, et al. Selective separation and concentration of antihypertensive peptides from rapeseed protein hydrolysate by electrodialysis with ultrafiltration membranes[J]. Food Chemistry, 2016, 197(Pt A): 1 008-1 014.
[8] XIE Hui-hui, WANG Yi-feng, ZHANG Jing, et al. Study of the fermentation conditions and the antiproliferative activity of rapeseed peptides by bacterial and enzymatic cooperation [J]. International Journal of Food Science & Technology, 2015, 50(3): 619-625.
[9] 陈丽丽, 赵利, 袁美兰, 等. 大孔吸附树脂对草鱼蛋白水解液脱盐的作用[J]. 食品科学, 2016, 37(5): 84-88.
[10] GOKMAN V, SERPEN A. Equilibrium and kinetic studies on the adsorption of dark colored compounds from apple juice using adsorbent resin[J]. Journal of Food Engineering, 2002, 53(3): 221-227.
[11] 张佳秀, 侯俊财, 邹艳楠, 等. 大孔树脂对酶解大豆肽脱盐效果影响及其最佳条件研究[J]. 食品工业科技, 2014, 35(3): 203-206.
[12] 赵泽龙. 小麦低聚肽制备工艺的优化及性质与抗氧化能力测试[D]. 大庆: 黑龙江八一农垦大学, 2016: 35-36.
[13] 鲁伟, 任国谱, 宋俊梅. 蛋白水解液中多肽含量的测定方法[J]. 食品科学, 2005, 26(7): 169-171.
[14] 刘军, 徐志宏, 魏振承, 等. 棉籽蛋白源ACE抑制肽的制备过程中脱盐技术的研究[J]. 中国粮油学报, 2013, 28(7): 36-40.
[15] 李晓文, 严聃, 盛灿梅. 邻二氮菲-铁(Ⅲ)分光光度法测定茶叶中微量单宁[J]. 食品与机械, 2006, 22(2): 90-91.
[16] 王国蓉, 万文贵, 王丽, 等. 三氯化铁滴定法测定植酸含量方法的优化及改进研究[J]. 食品科学, 2009, 30(10): 188-190.
[17] 王宁惠. 油菜籽(饼粕)中硫代葡萄糖甙总量速测方法——氯化钯法[J]. 青海农林科技, 2009(3): 58-59.
[18] YANG Wen-gen, WANG Zhang, XU Shi-ying. A new method for determination of antithrombotic activity of egg white protein hydrolysate by microplatereader[J]. 中国化学快报: 英文版, 2007, 18(4): 449-451.
[19] 潘道东, 林璐. DA201-C大孔吸附树脂静态吸附ACE抑制肽的研究[J]. 食品科学, 2009, 30(5): 16-19.
[20] 邓惠玲, 郑炯, 阚建全. 大孔树脂DA201-C对猪血红蛋白ACE抑制肽吸附性能的研究[J]. 食品科学, 2013, 34(12): 27-31.
[21] 张晓平, 赵世锋, 蒋琼, 等. 酶解燕麦蛋白制备ACE抑制肽的研究[J]. 食品科学, 2009, 30(11): 189-193.
[22] ZHONG Fang, ZHANG Xiao-mei, MA Jian-guo, et al. Fractionation and identification of a novel hypocholesterolemic peptide derived from soy protein Alcalasehydrolys-ates[J]. Food Research International, 2007, 40(6): 756-762.
[23] ZHANG Feng-xiang, WANG Zhang, XU Shi-ying. Macroporous resin purification of grass carp fish (Ctenopharyngodonidella) scale peptides with in vitro angiotensin-I converting enzyme (ACE) inhibitory ability[J]. Food Chemistry, 2009, 117(3): 387-392.
[24] ZHANG Feng-xiang, WANG Zhang, XU Shi-ying, et al. Purification and Characterization of a Radical Scavenging Peptide from Rapeseed Protein Hydrolysates[J]. Journal of the American Oil Chemists Society, 2009, 86(10): 959-966.
[25] REN Yao, WU Hui, LAI Fu-rao, et al. Isolation and identification of a novel anticoagulant peptide from enzymatic hydrolys-ates of scorpion (Buthusmartensii, Karsch) protein[J]. Food Research International, 2014, 64(Complete): 931-938.
[26] ZHANG Shao-bing. In vitro antithrombotic activities of peanut protein hydrolysates[J]. Food Chemistry, 2016, 202: 1-8.
[27] ZHAO Lei, WANG Xuan, ZHANG Xiao-lei, et al. Purification and identification of anti-inflammatory peptides derived from simulated gastrointestinal digests of velvet antler protein (Cervuselaphus Linnaeus)[J]. Journal of Food & Drug Analysis, 2016, 24(2): 376-384.