Abstract
This paper reviewed the applications of the spectral technologies, including the adulteration detection, nutrients detection,antibiotics detection, microbial contamination detection and product types identification in dairy and dairy products. Using Near-infrared spectroscopy, Raman spectroscopy and Hyperspectral imaging technique, the important applications and research advances of the quality detection and safety assessments in dairy and dairy products have been also reviewed. It was pointed out that the joint application of various technologies is the trend of future research.
Publication Date
1-28-2019
First Page
232
Last Page
236
DOI
10.13652/j.issn.1003-5788.2019.01.041
Recommended Citation
Ning, JU and Jie, HU
(2019)
"Application of Spectroscopy in dairy and dairy products,"
Food and Machinery: Vol. 35:
Iss.
1, Article 41.
DOI: 10.13652/j.issn.1003-5788.2019.01.041
Available at:
https://www.ifoodmm.cn/journal/vol35/iss1/41
References
[1] 薛建龙. 牛羊乳中蛋白质和脂肪的差异比较研究[D]. 西安: 陕西科技大学, 2015: 3-6.
[2] 李秀花. 酸水解法测定食品中脂肪含量与索氏抽提法的比较[J]. 山西医科大学学报, 1999(4): 383-384.
[3] 岳虹, 赵贞, 刘丽君, 等. 高效液相色谱法测定发酵乳饮料中果糖、葡萄糖、蔗糖、麦芽糖及乳糖含量[J].乳业科学与技术, 2017, 40(2): 23-26.
[4] 剧柠, 柴佳丽, 黄小晶. 宁夏奶产区不同季节 不同规模牧场原料乳的微生物和理化指标分析[J]. 农产品加工: 学刊, 2013(16): 114-115, 118.
[5] FRANS Van Den Berg, CHRISTIAN B Lyndgaard, KLAVS M Srensen, et al. Process analytical technology in the food industry[J]. Trends in Food Science﹠Technology, 2013, 31(1): 27-35.
[6] 郭培源, 刘硕, 杨昆程, 等. 色谱技术、光谱分析法和生物检测技术在食品安全检测方面的应用进展[J]. 食品安全质量检测学报, 2015, 6(8): 3 217-3 223.
[7] FAZAL Mabooda, FARAH Jabeenb, JAVID Hussaina, et al. FT-NIRS coupled with chemometric methods as a rapid alternative tool for the detection & quantification of cow milk adulteration in camel milk samples[J]. Vibrational Spectroscopy, 2017, 92: 245-250.
[8] 王加华, 张晓伟, 王军, 等. 基于便携式近红外技术的生鲜乳品质现场评价[J]. 光谱学与光谱分析, 2014, 34(10): 2 678-2 684.
[9] 倪力军, 董笑笑, 陶庆璇, 等. 利用近红外光谱进行婴幼儿乳粉中营养物质含量的快速检测[J]. 食品科技, 2017, 42(4): 264-270.
[10] 王会, 陆建良. 近红外光谱法快速测定含乳饮料中增稠剂含量[J]. 食品研究与开发, 2016, 37(24): 132-134.
[11] LIU Ning-jing, HECTOR Aya Parra, ANNEMIEKE Pustjens, et al. Evaluation of portable near-infrared spectroscopy for organic milk authentication[J]. Talanta, 2018, 184: 128-135.
[12] 陈倩, 李沛军, 孔保华. 拉曼光谱技术在肉品科学研究中的应用[J]. 食品科学, 2012, 33(15): 307-313.
[13] 张正勇, 沙敏, 刘军, 等. 基于高通量拉曼光谱的奶粉鉴别技术研究[J]. 中国乳品工业, 2017, 45(6): 49-51.
[14] 王海燕, 宋超, 刘军, 等. 基于拉曼光谱-模式识别方法对奶粉进行真伪鉴别和掺伪分析[J]. 光谱学与光谱分析, 2017, 37(1): 124-128.
[15] 陈达, 黄志轩, 韩汐, 等. 奶粉掺假拉曼光谱成像检测新方法[J]. 纳米技术与精密工程, 2017, 15(1): 26-30.
[16] ALEKSANDAR Nedeljkovic, IGOR Tomasevic, JELENA Miocinovic, et al. Feasibility of discrimination of dairy creams and cream-like analogues using Raman spectroscopy and chemome-tric analysis[J]. Food Chemistry, 2017, 232, 487-492.
[17] RODRIGO Stephani, KAMILA De Sá Oliveira, CARLOS Eduardo Rocha De Almeida, et al. Raman spectroscopy as a tool to identify modification of whey protein concentrate (WPC) during shelf life[J]. Food Packaging and Shelf Life, 2017, 11: 1-9.
[18] 王琳, 王雪, 田静秒, 等. 表面增强拉曼光谱检测牛奶中三聚氰胺[J]. 中国农业科学, 2014, 47(11): 2 224-2 232.
[19] 陈小曼, 雷皓宇, 胡玉玲, 等. 固相萃取-表面增强拉曼光谱法测定奶粉中三聚氰胺[J]. 分析测试学报, 2016, 35(10): 1 343-1 346.
[20] 雷皓宇, 陈小曼, 李攻科, 等. 表面增强拉曼光谱法同时检测奶粉中三聚氰胺和二聚氰胺[J]. 分析科学学报, 2017, 33(3): 312-316.
[21] 赵蕊池, 王培龙, 石雷, 等. 自组装有序纳米银线表面增强拉曼光谱检测牛奶中三聚氰胺[J]. 分析化学, 2017, 45(1): 75-82.
[22] DONG Ning, HU Yong-jun, YANG Kang, et al. Development of aptamer-modified SERS nanosensor and oligonucleotide chip to quantitatively detect melamine in milk with high sensitivity[J]. Sensors and Actuators B: Chemical, 2016, 228: 85-93.
[23] SHI Qiao-qiao, HUANG Jie, SUN Ya-ning, et al. Utilization of a lateral flow colloidal gold immunoassay strip based on surface-enhanced Raman spectroscopy for ultrasensitive detection of antibiotics in milk[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2018, 197: 107-113.
[24] WANG Chong-wen, WANG Jun-feng, LI Min, et al. A rapid SERS method for label-free bacteria detection using polyethylenimine-modified Au-coated magnetic microspheres and Au@ Ag nanoparticles[J]. Analyst, 2016, 141(22): 6 226-6 238.
[25] WANG Pan-xue, SHINTARO Pang, BROOKE Pearson, et al. Rapid concentration detection and differentiation of bacteria in skimmed milk using surface enhanced Raman scattering mapping on 4-mercaptophenylboronic acid functionalized silver dendrites[J]. Analytical and Bioanalytical Chemistry, 2017, 409(8): 2 229-2 238.
[26] TOMASZ Czaja, MARIA Baranowska, SYLWESTER Mazurek, et al. Determination of nutritional parameters of yoghurts by FT Raman spectroscopy[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2018, 196: 413-417.
[27] PAULO Henrique Rodrigues Júnior, KAMILA De Sá Oliveira, CARLOS Eduardo Rocha De Almeida, et al. FT-Raman and chemometric tools for rapid determination of quality parameters in milk powder: Classification of samples for the presence of lactose and fraud detection by addition of maltodextrin[J]. Food Chemistry, 2016, 196: 584-588.
[28] YAO Yun-ping, ZHAO Guo-zhong, YAN Yuan-yuan, et al. Milk fat globules by confocal Raman microscopy: Differences in human, bovine and caprine milk[J]. Food Research International, 2016, 80: 61-69.
[29] GARINI Y, YOUNG I T, MCNAMARA G. Spectral imaging: Principles and applications[J]. Cytometry Part A, 2006, 69A(8): 735-747.
[30] AMIGO J M, MART I, GO WEN A. Hyperspectral imaging and chemometrics: a perfect combination for the analysis of food structure, composition and quality[J]. Data Handling in Science and Technology, 2013, 2: 343-370.
[31] HUANG Min, MOON S Kim, STEPHEN R Delwiche, et al. Quantitative analysis of melamine in milk powders using nearinfrared hyperspectral imaging and band ratio[J]. Journal of Food Engineering, 2016, 181: 10-19.
[32] JONGGUK Lim, GIYOUNG Kim, CHANGYEUN Mo, et al. Detection of melamine in milk powders using near-infrared hyperspectral imaging combined with regression coefficient of partial least squarer egression model[J]. Talanta, 2016, 151: 183-191.
[33] DBORA A P Forchetti, RONEI J Poppi. Use of NIR hyperspectral imaging and multivariate curve resolution (MCR) for detection and quantification of adulterants in milk powder[J]. LWT-Food Science and Technology, 2017, 76: 337-343.
[34] 刘宸, 王庆艳, 黄文倩, 等. 拉曼高光谱成像系统中光在奶粉层的穿透深度研究[J]. 光谱学与光谱分析, 2017, 37(10): 3 103-3 107.
[35] QIN Jian-wei, CHAO Kuang-lin, MOON S Kim. Simultaneous detection of multiple adulterants in dry milk using macro-scale Raman chemical imaging[J]. Food Chemistry, 2013, 138: 998-1 007.
[36] 张倩倩, 谭琨. 基于高光谱的牛奶中真蛋白质含量反演[J]. 光谱学与光谱分析, 2015, 35(12): 3 436-3 439.
[37] 赵紫竹, 卫勇, 张乃迁, 等. 基于高光谱的牛奶脂肪质量浓度预测模型建立与评价[J]. 中国乳品工业, 2018, 46(2): 45-48.
[38] 赵紫竹, 卫勇, 常若葵, 等. 牛奶中蜡样芽孢杆菌高光谱检测模型构建与分析[J]. 现代食品科技, 2017, 33(12): 249-254.
[39] 刘佳丽, 吴海云, 卫勇, 等. 基于高光谱技术结合纹理特征分析牛奶致病菌[J]. 农技服务, 2017, 34(5): 1-3.
[40] DARNAY Lívia, KRALIK Flóra, OROS Gergely, et al. Monitoring the effect of transglutaminase in semi-hard cheese during ripening by hyperspectral imaging[J]. Journal of Food Engineering, 2017, 196: 123-129.
[41] VASQUEZ Nadya, MAGAN Claudia, OBLITAS Jimy, et al. Comparison between artificial neural network and partial least squares regression models for hardness modeling during the ripening process of Swiss-type cheese using spectral profiles[J]. Journal of Food Engineering, 2018, 219: 8-15.