Abstract
The Fluent software was used to simulate the pulverization flow field of the “pulverizaing-disc grinding” two-stage mill. The influence and law of the blade distribution scheme on the circulating flow field were compared and analyzed. The parameters of the pulverizing blade were optimized by orthogonal design method. The rules of the blade deflection angle, the blade length and the blade pitch on the pulverization effect were analyzed, and the influence of the blade rotation speed on the pulverization effect was further discussed. The material pulverization was experimented to obtain the best performance parameters of the Mill. Taking the pulverization rotating speed, the pulverization time and the disc gap as the influencing factors, the three-factor and three-level regression experiments were carried out with the particle size qualification rate and power consumption as the objective function. The optimum parameter combination was optimized by using Design-Expert software. The results show that the pulverization effect is good when the blade has a spiral distribution, the blade deflection angle is 120 mm, the blade spacing is 30 mm. The effect of blade rotation speed on the maximum shear strain rate, dynamic pressure and turbulent flow energy of the material is linear. When the pulverizing rotation speed is 1 500 r/min, the pulverization time is 20 s, and the grinding disc gap is 0.045 mm, the particle size pass rate (more than 80 mesh is qualified) up to 90.4%, and the power consumption is 118.3 kJ.
Publication Date
10-28-2019
First Page
58
Last Page
64
DOI
10.13652/j.issn.1003-5788.2019.10.011
Recommended Citation
Haijun, MO; Tao, LING; and Zejun, ZHANG
(2019)
"Numerical simulation of pulverizing flow field and parameter optimization of the mill,"
Food and Machinery: Vol. 35:
Iss.
10, Article 11.
DOI: 10.13652/j.issn.1003-5788.2019.10.011
Available at:
https://www.ifoodmm.cn/journal/vol35/iss10/11
References
[1] 刘也嘉, 李楠楠, 林利忠, 等. 干法制备大米粉的工艺及特性研究[J]. 粮食与饲料工业, 2016, 12(6): 25-29.
[2] 张长森, 程俊华, 吴其胜, 等. 粉体技术及设备[M]. 上海: 华东理工大学出版社, 2007: 158-159.
[3] 武文斌, 黄卫文, 段翠芳. 盘式磨粉机的技术及应用[J]. 粮食与饲料工业, 2004(1): 5.
[4] 张更超, 应富强. 超细粉碎技术现状及发展趋势[J]. 中国粉体技术, 2003(2): 46-50.
[5] 张付军, 冯群德, 黄立志. S3R2715型盘摆式磨粉机的设计[J]. 机械研究与应用, 2003, 16(S1): 50-51.
[6] 徐宏彤, 庞建强. 一种新型双磨盘式磨粉机的研究[J]. 甘肃科技, 2006(9): 40, 64.
[7] 王雪梅, 薛振国. 新型盘式磨粉机的研究[J]. 中国机械, 2015(5): 70-72.
[8] 余金伟, 冯晓锋. 计算流体力学发展综述[J]. 现代制造技术与装备, 2013(6): 25-26.
[9] DARELIUS A, RASMUSON A, WACHEM B V, et al. CFD simulation of the high shear mixing process using kinetic theory of granular flow and frictional stress models[J]. Chemical Engineering Science, 2008, 63(8): 2 188-2 197.
[10] DONIZAK J, JAROSZ P, KRASZEWSKA A. An application of numerical simulation of multiphase flow for the redesign of a mixer agitator in Pb refining process[J]. Journal of Physics: Conference Series, 2014, 530(1): 1-8.
[11] 张克平, 谭成, 张锋伟. 基于Fluent的小麦辊式制粉流场模拟及试验验证[J]. 中国粮油学报, 2016, 31(7): 11-18.
[12] TANG Guang-wu, WU Bin, BAI Deng-qi, et al. CFD modeling and validation of a dynamic slab heating process in an industrial walking beam reheating furnace[J]. Applied Thermal Engineering, 2018, 132(5): 779-789.
[13] 张磊成, 果晓东, 赵恩铎, 等. 计算流体力学(CFD)发展简述[C]// 北京力学会第二十三届学术年会会议论文集. 北京: [出版者不详], 2017: 101-103.
[14] DONG L, JOHANSEN S T, ENGH T A. Flow induced by an impeller in an unbaffled tank-II: Numerical modeling[J]. Chemical Engineering Science, 1994, 49(20): 3 511-3 518.
[15] 沈培玉, 赵浩, 张裕中. 农产品物料高速切割粉碎流场数值模拟与试验[J]. 农业机械学报, 2010, 41(9): 60-65.
[16] 王福军. 计算流体动力学分析: CFD软件原理与应用[M]. 北京: 清华大学出版社, 2004: 124-125.
[17] 王海彦, 刘永刚, 胡凡金, 等. ANSYS Fluent流体数值计算方法与实例[M]. 北京: 中国铁道出版社, 2015: 299-324.
[18] 任露泉. 试验设计及其优化[M]. 北京: 科学出版社, 2009: 224-235.
[19] 丁力, 杨丽, 刘守荣, 等. 辅助充种种盘玉米气吸式高速精量排种器设计[J]. 农业工程学报, 2018, 34(22): 1-11.