Abstract
In this study, the role of major virulence factors in the pathogenic process of Cronobacter, including enterotoxin, outer membrane protein, gene Inv, and key enzyme RpfF were reviewed. Furthermore, the pathogenic mechanism was summarized from the following aspects, i. e. the adhesion of bacterial hair, the absorption ability of iron by Cronobacter, the utilization of sialic acid, the effects of biofilm on the protection, and the adhesion of Cronobacter, the effect of efflux system on the viability of Cronobacter in host gastrointestinal tract and desiccation resistance.
Publication Date
10-28-2019
First Page
150
Last Page
154,159
DOI
10.13652/j.issn.1003-5788.2019.10.030
Recommended Citation
Peng, FEI; Tongxiang, YANG; Xi, CHEN; Jinle, XIANG; Shengjuan, ZHAO; Yunfeng, XU; Lianxin, ZHOU; Ling, GUO; and Huaibin, KANG
(2019)
"Progress on main virulence factors and pathogenic mechanism of Cronobacter spp.,"
Food and Machinery: Vol. 35:
Iss.
10, Article 30.
DOI: 10.13652/j.issn.1003-5788.2019.10.030
Available at:
https://www.ifoodmm.cn/journal/vol35/iss10/30
References
[1] YAN Q Q, CONDELL O, POWER K, et al. Cronobacter species (formerly known as Enterobacter sakazakii) in powdered infant formula: A review of our current understanding of the biology of this bacterium[J]. Journal of Applied Microbiology, 2012, 113(1): 1-15.
[2] FARMER J, ASBURY M, HICKMAN F, et al.Enterobacter sakazakii: A new species of “Enterobacteriaceae” isolated from clinical specimens[J]. International Journal of Systematic and Evolutionary Microbiology, 1980, 30(3): 569-584.
[3] IVERSEN C, LEHNER A, MULLANE N, et al. The taxonomy of Enterobacter sakazakii: Proposal of a new genus Cronobacter gen. nov. and descriptions of Cronobacter sakazakii comb. nov. Cronobacter sakazakii subsp. sakazakii, comb. nov. Cronobacter sakazakii subsp. malonaticus subsp. nov. Cronobacter turicensis sp. nov. Cronobacter muytjensii sp. nov. Cronobacter dublinensis sp. nov. and Cronobacter genomospecies 1[J]. Bmc Evolutionary Biology, 2007, 7(1): 64.
[4] IVERSEN C, MULLANE N, MCCARDELL B, et al.Cronobacter gen. nov. a new genus to accommodate the biogroups of Enterobacter sakazakii, and proposal of Cronobacter sakazakii gen. nov. comb. nov. Cronobacter malonaticus sp. nov. Cronobacter turicensis sp. nov. Cronobacter muytjensii sp. nov. Cronobacter dublinensis sp. nov. Cronobacter genomospecies 1, and of three subspecies, Cronobacter dublinensis subsp. dublinensis subsp. [J]. International Journal of Systematic and Evolutionary Microbiology, 2008, 58(6): 1 442-1 447.
[5] JOSEPH S, DESAI P, JI Y, et al. Comparative analysis of genome sequences covering the seven Cronobacter species[J]. Plos One, 2012, 7(11): e49455.
[6] FEI Peng, JIANG Yi-chao, GONG Shao-ying, et al. Occurrence, genotyping, and antibiotic susceptibility of Cronobacter spp. in drinking water and food samples from Northeast China[J]. Journal of Food Protection, 2018, 81(3): 456-460.
[7] MOHAMMED M A, SALLAM K I, TAMURA T. Prevalence, identification and molecular characterization of Cronobacter sakazakii isolated from retail meat products[J]. Food Control, 2015, 53: 206-211.
[8] CHEN Wan-yi, YANG Jie-lin, YOU Chun-ping, et al. Diversity of Cronobacter. spp. isolates from the vegetables in the middle-east coastline of China[J]. World Journal of Microbiology and Biotechnology, 2016, 32(6): 90.
[9] GARBOWSKA M, BERTHOLD-PLUTA A, STASIAK-RANSKA, L. Microbiological quality of selected spices and herbs including the presence of Cronobacter spp.[J]. Food Microbiology, 2015, 49: 1-5.
[10] YE Ying-wang, LI Hui, WU Qing-ping, et al. Isolation and phenotypic characterization of Cronobacter from dried edible macrofungi samples[J]. Journal of Food Science, 2014, 79(7): 1 382-1 386.
[11] FEI Peng, MAN Chao-xin, LOU Bin-bin, et al. Genotyping and source tracking of Cronobacter sakazakii and C. malonaticus isolates from powdered infant formula and an infant formula production factory in China[J]. Applied and Environmental Microbiology, 2015, 81(16): 5 430-5 439.
[12] HEPERKAN D, DALKILIC-KAYA G, JUNEJA V K. Cronobacter sakazakii, in baby foods and baby food ingredients of dairy origin and microbiological profile of positive samples[J]. LWT-Food Science and Technology, 2017, 75: 402-407.
[13] FEI Peng, JIANG Yi-chao, JIANG Yan, et al. Prevalence, molecular characterization, and antibiotic susceptibility of Cronobacter sakazakii isolates from powdered infant formula collected from Chinese retail markets[J]. Frontiers in Microbiology, 2017, 8: 2 026.
[14] 陈雅蘅, 周帼萍. 食品工业中克罗诺杆菌(原阪崎肠杆菌)的污染与控制[J]. 中国酿造, 2013, 32(7): 16-19.
[15] CAUBILLABARRON J, HURRELL E, TOWNSEND S, et al. Genotypic and phenotypic analysis of Enterobacter sakazakii strains from an outbreak resulting in fatalities in a neonatal intensive care unit in France[J]. Journal of Clinical Microbiology, 2007, 45(12): 3 979-3 985.
[16] PAGOTTO F J, NAZAROWEC-WHITE M, BIDAWID S, et al. Enterobacter sakazakii: Infectivity and enterotoxin production in vitro and in vivo[J]. J Food Prot, 2003, 66(3): 370-375.
[17] RAGHAV M, AGGARWAL P K. Purification and characterization of Enterobacter sakazakii enterotoxin[J]. Canadian Journal of Microbiology, 2007, 53(6): 750-755.
[18] MOHAN NAIR M K, VENKITANARAYANAN K. Role of bacterial OmpA and host cytoskeleton in the invasion of human intestinal epithelial cells by Enterobacter sakazakii[J]. Pediatric Research, 2007, 62(6): 664-669.
[19] MOHAN NAIR M K, VENKITANARAYANAN K S. Cloning andsequencing of the OmpA gene of enterobacter sakazakii and development of an OmpA-Targeted PCR for rapid detection of enterobacter sakazakii in infant formula[J]. Applied and Environmental Microbiology, 2006, 72(4): 2 539-2 546.
[20] MITTAL R, WANG Y, HUNTER C J, et al. Brain damage in newborn rat model of meningitis by Enterobacter sakazakii: A role for outer membrane protein A[J]. Laboratory Investigation, 2009, 89(3): 263-277.
[21] KIM K, KIM K P, CHOI J, et al. Outer membrane proteins A (OmpA) and X (OmpX) are essential for basolateral invasion of Cronobacter sakazakii[J]. Applied and Environmental Microbiology, 2010, 76(15): 5 188-5 198.
[22] CHANDRAPALA D, KIM K, CHOI Y, et al. Putative inv is essential for basolateral invasion of Caco-2 Cells and acts synergistically with OmpA to affect in vitro and in vivo virulence of Cronobacter sakazakii ATCC 29544[J]. Infection and Immunity, 2014, 82(5): 1 755-1 765.
[23] SUPPIGER A, ESHWAR A K, STEPHAN R, et al. The DSF type quorum sensing signalling system RpfF/R regulates diverse phenotypes in the opportunistic pathogen Cronobacter[J]. Scientific Reports, 2016, 6(1): 18 753.
[24] KIM S, YOON H, RYU S. New virulence factor CSK29544_02616 as LpxA binding partner in Cronobacter sakazakii[J]. Scientific Reports, 2018, 8(1): 835.
[25] 韩冉. 阪崎克罗诺杆菌间毒力比较与致病因子研究[D]. 天津: 天津科技大学, 2014: 42.
[26] MANGE J P, STEPHAN R, BOREL N, et al.Adhesive properties of Enterobacter sakazakii to human epithelial and brain microvascular endothelial cells[J]. Bmc Microbiology, 2006, 6(1): 58.
[27] STEPHAN R, LEHNER A, TISCHLER P, et al. Complete genome sequence of Cronobacter turicensis LMG 23827, a food-borne pathogen causing deaths in neonates[J]. Journal of Bacteriology, 2011, 193(1): 309-310.
[28] JOSEPH S, FORSYTHE S J. Predominance of Cronobacter sakazakii sequence type 4 in neonatal infections[J]. Emerging Infectious Diseases, 2011, 17(9): 1 713-1 715.
[29] GRIM C J, KOTEWICZ M L, POWER K A, et al. Pan-genome analysis of the emerging foodborne pathogen Cronobacter spp. suggests a species-level bidirectional divergence driven by niche adaptation[J]. BMC Genomics, 2013, 14(1): 366.
[30] NEGRE V L, BONACORSI S. The siderophore receptor IroN, but not the high-pathogenicity island or the hemin receptor ChuA, contributes to the bacteremic step of Escherichia coli neonatal meningitis[J]. Infection and Immunity, 2004, 72(2): 1 216-1 220.
[31] FRANCO A A, HU L, GRIM C J, et al. Characterization ofputative virulence genes on the related repFIB plasmids harbored by Cronobacter spp.[J]. Applied and Environmental Microbiology, 2011, 77(10): 3 255-3 267.
[32] FRANCO A A, KOTHARY M H, GOPINATH G, et al. Cpa, the outer membrane protease of Cronobacter sakazakii, activates plasminogen and mediates resistance to serum bactericidal activity[J]. Infection and Immunity, 2011, 79(4): 1 578.
[33] 刘咪, 杨保伟, 夏效东, 等. 阪崎克罗诺肠杆菌致病性机理研究进展[J]. 食品科学, 2014, 35(9): 329-333.
[34] 齐晓彦. 唾液酸在婴幼儿配方奶粉中的应用进展[J]. 食品工业, 2017, 38(8): 221-225.
[35] 王艳菲, 张兰威. 人乳低聚糖的特点及其对婴儿肠道菌群与免疫功能的影响[C]//中国食品科学技术学会第十五届年会. 青岛: 中国食品科学技术学会, 2018: 113-114.
[36] SALVADOR A M, FIDELMA B E. Insights into the evolution of sialic acid catabolism among bacteria[J]. BMC Evolutionary Biology, 2009, 9(1): 45-50.
[37] JOSEPH S, HARIRI S, NAQASH MASOOD, et al. Sialic acid utilization by Cronobacter sakazakii[J]. Microbial Informatics and Experimentation, 2013, 3(1): 3.
[38] JOSEPH S, SONBOL H, HARIRI S, et al. Diversity of the Cronobacter genus as revealed by multilocus sequence typing[J]. Journal of Clinical Microbiology, 2012, 50(9): 3 031-3 039.
[39] BEUCHAT L R, KIM H, GURTLER J B, et al.Cronobacter sakazakii in foods and factors affecting its survival, growth, and inactivation[J]. International Journal of Food Microbiology, 2009, 136(2): 204-213.
[40] HARTMANN I, CARRANZA P, LEHNER A, et al. Genes involved in Cronobacter sakazakii biofilm formation[J]. Applied and Environmental Microbiology, 2010, 76(7): 2 251-2 261.
[41] SCHEEPE-LEBERKHNE M, WAGNER F. Optimization and preliminary characterization of an exopolysaccharide synthezised by Enterobacter sakazakii[J]. Biotechnology Letters, 1986, 8(10): 695-700.
[42] TOUZE, THIERRY, ESWARAN, et al. Interactions underlying assembly of the Escherichia coli AcrAB-TolC multidrug efflux system[J]. Molecular Microbiology, 2010, 53(2): 697-706.
[43] FRANKE S, GRASS G, RENSING C, et al. Molecular analysis of the copper-transporting efflux system CusCFBA of Escherichia coli[J]. Journal of Bacteriology, 2003, 185(13): 3 804-3 812.
[44] KUCEROVA E, CLIFTON S W, XIA Xiao-qin, et al. Genome sequence of Cronobacter sakazakii BAA-894 and comparative genomic hybridization analysis with other Cronobacter species[J]. Plos One, 2010, 5 (3): e9556.
[45] BREEUWER P, LARDEAU A, PETERZ M, et al. Desiccation and heat tolerance of Enterobacter sakazakii[J]. Journal of Applied Microbiology, 2003, 95(5): 967-973.
[46] IVERSEN C, LANE M, FORSYTHE S J. The growth profile, thermotolerance and biofilm formation of Enterobacter sakazakii, grown in infant formula milk[J]. Letters in Applied Microbiology, 2010, 38(5): 378-382.
[47] RIEDEL K, LEHNER A. Identification of proteins involved in osmotic stress response in Enterobacter sakazakii by proteomics[J]. Proteomics, 2007, 7(8): 1 217-1 231.
[48] OGRODZKI P, FORSYTHE S. Capsular profiling of the Cronobacter genus and the association of specific Cronobacter sakazakii and C. malonaticus capsule types with neonatal meningitis and necrotizing enterocolitis[J]. Bmc Genomics, 2015, 16(1): 1-15.
[49] 陈启明. 克罗诺杆菌免疫学和分子生物学检测方法研究[D]. 南京: 南京农业大学, 2016: 1.
[50] 刘秀梅, 裴晓燕, 郭云昌. 中国安徽阜阳劣质婴儿配方粉中阪崎肠杆菌的污染[J]. 中国食品卫生杂志, 2005, 17(1): 10-12.
[51] RAMSEY M M, KORGAONKAR A K, WHITELEY M. Quorum-sensing in bacteria[J]. Encyclopedia of Microbiology, 2009, 55(2): 357-374.