Abstract
Quick freezing is an important technique for food preservation. The faster the freezing rate, the better the quality of frozen food after thawing. The greater the wind speed on the surface of the frozen product, the greater the heat exchange intensity and the faster the freezing rate. However, only increasing the fan speed will result in a decrease in fan efficiency and a decrease in flow field evenness, so the flow field needs to be optimized. The fan efficiency can be increased by setting the cone to the fan. The baffle can be arranged in the flow field to eliminate the eddy current in the flow field. Increasing the flow rate in the freezing zone can enhance the convective heat transfer of the food surface. To prevent the air exchange inside and outside the device can be used to reduce the frosting of the evaporator and reduce the energy consumption of the equipment. Combining multiple measures to decrease manufacturing and maintenance costs, reduce operating costs, and improve the quality of frozen food is the direction of future quick-freezing equipment optimization.
Publication Date
10-28-2019
First Page
155
Last Page
159
DOI
10.13652/j.issn.1003-5788.2019.10.031
Recommended Citation
Yifan, ZHU and Jing, XIE
(2019)
"Progress in research of flow field optimization in quick freezing equipment,"
Food and Machinery: Vol. 35:
Iss.
10, Article 31.
DOI: 10.13652/j.issn.1003-5788.2019.10.031
Available at:
https://www.ifoodmm.cn/journal/vol35/iss10/31
References
[1] JAMES C, PURNELL G, JAMES S J. A critical review of dehydro freezing of fruits and vegetables[J]. Food & Bioprocess Technology, 2014, 7(5): 1 219-1 234.
[2] TANSEY F, GORMLEY R, BUTLER F. The effect of freezing compared with chilling on selected physico-chemical and sensory properties of sous vide cooked carrots[J]. Innovative Food Science and Emerging Technologies, 2010, 11(1): 137-145.
[3] ZHAO Hong-xia, LIU Sheng, TIAN Chang-qing, et al. An overview of current status of cold chain in China[J]. International Journal of Refrigeration, 2018, 88(27): 483-495.
[4] 申志远, 刘斌, 杨瑞丽, 等. 西兰花速冻过程温度分布的数值模拟研究[J]. 食品科技, 2014, 39(5): 52-55.
[5] MARAZANI T, MADYIRA D M, AKINLABI E T. Investigation of theparameters governing the performance of jet impingement quick food freezing and cooling systems: A review[J]. Procedia Manufacturing, 2017, 8(3): 754-760.
[6] HECHT S S, KENNEY P M J, WANG Ming-yao, et al. Benzyl isothiocyanate: An effective inhibitor of polycyclic aromatic hydrocarbon tumorigenesis in A/J mouse lung[J]. Cancer Lett, 2002, 187(32): 87-94.
[7] 唐婉, 谢晶. 速冻设备的分类及性能优化的研究进展[J]. 食品工业科技, 2016, 37(23): 362-366.
[8] BULUT M, BAYER , KIRTIL E, et al. Effect of freezing rate and storage on the texture and quality parameters of strawberry and green bean frozen in home type freezer[J]. International Journal of Refrigeration, 2018, 88(34): 360-369.
[9] DIMA J B, SANTOS M V, BARON P J, et al. Experimental study and numerical modeling of the freezing process of marine products[J]. Food and Bioproducts Processing, 2014, 92(37): 54-66.
[10] LUAN Lan-lan, WANG Li-ping, WU Tian-tian. A study of ice crystal development in hairtail samples during different freezing processes by cryosectioning versus cryosubstitution method[J]. International Journal of Refrigeration, 2018, 87(23): 39-46.
[11] 舒志涛, 谢晶, 杨大章. 喷嘴结构对冲击式速冻设备性能优化研究进展[J]. 食品与机械, 2018, 34(6): 187-191.
[12] SALYADORI V O, MASCHERONI R H. Analysis of impingement freezers performance[J]. Journal of Food Engineering, 2002, 54(2): 133-140.
[13] INGOLE S B, SUNDARAM K K. Experimental average Nusselt number characteristics with inclined non-confined jet impingement of air for cooling application[J]. Experimental Thermal and Fluid Science, 2016, 77(29): 124-131.
[14] KAALE L D, EIKEVIK T M, RUSTAD T, et al. Superchilling of food: A review[J]. Journal of Food Engineering, 2011, 107(35): 141-146.
[15] DOMINGUEZ M, ELVIRAC, FUSTER C. Influence of air velocity and temperature on the two-stage cooling of perishable large-sized products[J]. Bulletin de L'institut International du Froid, 1975, 22(4): 83-90.
[16] LAWALD U, ABUBAKARA A, ALHARBIM B, et al. A numerical study of steady and unsteady flow and heat transfer from a confined slot jet impinging on a constant heat flux wall[J]. Journal of Mechanical Engineering and Techno-logy, 2014, 6(2): 1-17.
[17] ERDOGDU F, SARKAR A, SINGH R P. Mathematical modeling of air-impingement cooling of finite slab shaped objects and effect of spatial variation of heat transfer coefficient[J]. Journal of Food Engineering, 2005, 71(15): 287-294.
[18] 万金庆, 岳占凯, 厉建国, 等. 马铃薯泥鼓风冷冻数值模拟与实验[J]. 农业机械学报, 2017, 48(4): 298-304.
[19] 李保国. 食品冷冻过程的试验研究与数值模拟[C]//第四届全国食品冷藏链大会暨2002全国气调冷库技术研讨会论文集. 西安: 中国制冷学会, 2002: 6.
[20] ERDOGDU F, FERRUA M, SINGH K S, et al. Air-impingement cooling of boiled eggs: Analysis of flow visualization and heat transfer[J]. Journal of Food Engineering, 2007, 79(17): 920-928.
[21] DARIUSZ G, KLUZA F. Heat transfer coefficient in impingement fluidization freezing of vegetables and its prediction[J]. International Journal of Refrigeration, 2012, 35(4): 871-879.
[22] HUAN Zhong-jie. Performance evaluation indexes for quick-freezers[J]. International Journal of Refrigeration, 2003, 26(7): 817-822.
[23] 赖威娜. 交通运载工具用液氮速冻机提高液氮利用率的设计研究[D]. 舟山: 浙江海洋大学, 2017: 31-40.
[24] 牛新朝. -60 ℃低温速冻柜内流场及温度场模拟分析与实验研究[D]. 哈尔滨: 哈尔滨商业大学, 2015: 22-28.
[25] 徐斌, 胡振武, 王志远, 等. 板带式速冻机内部通道流场的数值模拟[J]. 制冷学报, 2004(1): 55-59.
[26] 祁艳会. 速冻隧道流场模拟及隧道的优化设计[D]. 郑州: 郑州大学, 2017: 62-80.
[27] LACERDA V T, MELO C, BARBOSAIR J, et al. Measurements of the air flow field in the freezer compartment of a top-mount no-frost refrigerator: The effect of temperature[J]. International Journal of Refrigeration, 2005, 28(5): 774-783.
[28] 张珍, 谢晶. 上下冲击式高效鼓风冻结装置速度场的数值模拟与验证[J]. 低温工程, 2008, 3(6): 45-50.
[29] 朱必佳, 孙宇. 自堆积式螺旋速冻机流场数值模拟[J]. 包装与食品机械, 2017, 35(5): 37-42.
[30] 赵文锋, 杨洲. 微型冷库货物降温特性的CFD数值模拟[J]. 中国科技, 2015, 10(5): 546-551.
[31] ODEY M. Meat carton blast chilling/freezing cabinet performance improvements[C]//Proceedings IIR-IRHACE 2006 Conference. Madrid: Atlantis Press, 2006: 118-124.
[32] 李堃. CO2冷风机结构参数研究与优化[D]. 天津: 天津商业大学, 2018: 49-53.
[33] CHENG Qiong-yi, LI Hao, RONG Li, et al. Using CFD to assess the influence of ceiling deflector design on airflow distribution in hen house with tunnel ventilation[J]. Computers and Electronics in Agriculture, 2018, 151(29): 165-174.
[34] WU Tao, GE Zhi-hua, YANG Li-jun, et al. Flow deflectors to release the negative defect of natural wind on large scale dry cooling tower[J]. International Journal of Heat and Mass Transfer, 2019, 128(26): 248-269.
[35] RAINA A, HARMAIN G A, HAQ M I U. Numerical investigation of flow around a 3D bluff body using deflector plate[J]. International Journal of Mechanical Sciences, 2017, 131/132: 701-711.
[36] KIM J J, KIM J J, LEE S J. Substantial drag reduction of a tractor-trailer vehicle using gap fairings[J]. Journal of Wind Engineering and Industrial Aerodynamics. 2017, 171(25): 93-100.
[37] 梁亚星, 陶乐仁, 郑志皋. 新型流态化食品速冻机内风道流场的数值模拟[J]. 食品与机械, 2005, 21(2): 37-40.
[38] 张翔, 韩佳伟, 杨信廷, 等. 不同构造冷藏车厢体的冷却性能模拟与对比[J]. 制冷学报, 2018, 39(2): 89-98.
[39] 张亮. 隧道式速冻装置风场均衡性研究[C]//第七届中国冷冻冷藏新技术新设备研讨会论文集. 天津: 中国制冷空调工业协会, 2015: 5.
[40] 郭振华. 螺旋式快速冻结装置进出料口热质交换的研究[D]. 天津: 天津商学院, 2002: 3.
[41] 尹从绪. 遮流板对螺旋式速冻装置料口热质交换的节能研究[C]//中国制冷学会第十七次团体会员大会暨第五届全国食品冷藏链大会论文集. 长沙: 中国制冷学会, 2004: 5.
[42] 毛力, 郇中杰. 螺旋式速冻机料口跑冷的可视化实验研究[J]. 制冷与空调: 四川, 2004(1): 24-26.
[43] 黄建昌, 何绍书. 螺旋式速冻机料口跑冷机理分析[J]. 低温工程, 2003(2): 36-40.
[44] 吕静, 郇中杰, 何绍书, 等. 单螺旋吹风式速冻装置料口改进的实验研究[J]. 制冷学报, 2004(3): 33-36.
[45] 毛力, 黄建昌, 何绍书. 螺旋式速冻装置料口气流组织的研究[J]. 低温工程, 2004(2): 30-35.
[46] 陆蓓蕾, 陈瑞球, 黄建昌. 低温流场气流组织的数值分析[J]. 流体机械, 2006, 3(10): 84-86.