Abstract
Ultrasonic assisted complex enzyme (1.0% alkaline protease and 0.2% high temperature resistant alpha-amylase) was used to extract dietary fiber from milk white colored kidney bean residue after enzymolysis.The effect of ultrasonic conditions on the extraction rate of water-insoluble dietary fiber (IDF) and water-soluble dietary fiber (SDF) was studied.The results showed that the extraction rate of IDF and SDF reached 60.11% and 5.63% respectively, when extracted with 250 W of ultrasonic at 60 ℃ 25 min. There were characteristic absorption peaks in the infrared spectra of DF. The water holding capacity of SDF was 1.828 g/g higher than that of IDF, and the oil holding capacity was 0.69 g/g higher than that of IDF.
Publication Date
10-28-2019
First Page
201
Last Page
205
DOI
10.13652/j.issn.1003-5788.2019.10.041
Recommended Citation
Yanli, ZHANGN; Ying, WANG; Di, WANG; Zhaohang, ZUO; and Shuting, LIU
(2019)
"Optimization of ultrasonic assisted enzymatic extraction of dietary fiber from light speckled kidney bean,"
Food and Machinery: Vol. 35:
Iss.
10, Article 41.
DOI: 10.13652/j.issn.1003-5788.2019.10.041
Available at:
https://www.ifoodmm.cn/journal/vol35/iss10/41
References
[1] HAN Chun-ran, YAO Shan-shan, XU Xin. Granule structure and physico-chemical properties of light speckled kidney bean starch[J]. Food Science, 2012, 33(3): 63-67.
[2] 于雪慧, 童军茂, 张建. 奶花芸豆中凝集素的提取、纯化及鉴定[J]. 食品工业科技, 2018, 39(15): 54-60, 65.
[3] ZHU Guang-yong, ZHU Xian, QI Fan, et al. Production of reducing sugars from bean dregs waste by hydrolysis in subcritical water[J]. Journal of Analytical & Applied Pyrolysis, 2011, 90(2): 182-186.
[4] TAO Ji-de, HE Yu-feng, YANG Cai-xia, et al. Advanced in extraction, modification, and utilization of the active constituents from beandregs[J]. Natural Product Research and Development, 2012, 20(3): 55-58.
[5] 赵影, 韩建春, 郑环宇, 等. 豆渣深加工及综合利用的研究现状[J]. 大豆科学, 2013, 32(4): 555-560.
[6] 李梓铭, 李红爱. 膳食纤维研究现状的问题分析及发展方向的预测[J]. 现代食品, 2018(10): 18-22, 26.
[7] 张武松, 迟永楠, 孙艳, 等. 白芸豆豆渣中淀粉的提取及其特性研究[J]. 粮食加工, 2017(5): 44-48.
[8] 张松. 膳食纤维的功能特性及在食品领域的研究进展[J]. 食品研究与开发, 2018, 39(17): 221-225.
[9] GUO Zeng-wang, MA Ping, DIAO Jing-jing, et al. Physicochemical and adsorption properties of ultramicro insoluble dietary fiber from soybean hull[J]. Food Science, 2018, 39(5): 106-112.
[10] 佐兆杭, 王颖, 刘淑婷, 等. 杂豆膳食纤维对糖尿病大鼠的降血糖作用[J]. 食品科学, 2018, 39(1): 177-181.
[11] ADAMS S,CHE Dong-sheng, QIN Gui-xin, et al. Interactions of dietary fiber with nutritional components on gut microbial composition, function, and health in monogastrics[J]. Current Protein & Peptide Science, 2018, 19(10): 1 011-1 023.
[12] 耿舒雯, 张有林, 张润光, 等. 核桃粕膳食纤维提取、结构分析及粒度差异对其理化性质的影响[J]. 食品工业科技, 2017, 38(18): 50-55.
[13] WANG Li, LIU Hua-min, XIE Ai-jun, et al. Dietary fiber extraction from defatted corn hull by hot-compressed water[J]. Polish Journal of Food & Nutrition Sciences, 2017, 68(2): 133-140.
[14] 张玉锋, 宋彦博, 王志煌, 等. 椰蓉膳食纤维的酶法提取与理化性质分析[J]. 食品研究与开发, 2018(3): 24-29.
[15] 闵钟熳, 贾笑雨, 解铁民, 等. 微生物发酵法提取米糠粕中可溶性膳食纤维的研究[J]. 中国酿造, 2017, 36(8): 53-56.
[16] 张祖姣, 王博, 李梦龙. 酶法辅助碱液提取生姜残渣中可溶性膳食纤维的研究[J]. 湖南科技学院学报, 2018, 39(5): 42-44.
[17] 陆红佳, 况慧, 刘庆庆. 超声波辅助法提取姜渣中不溶性膳食纤维的研究[J]. 食品工业, 2018(7): 32-36.
[18] 薛山. 紫薯不溶性膳食纤维超声辅助酶法提取工艺及抗氧化活性研究[J]. 食品与机械, 2018, 34(5): 153-157, 163.
[19] 赵泰霞, 张明玉. 超声波辅助酶法提取红豆中的膳食纤维[J]. 农产品加工, 2016(7): 8-11.
[20] 徐学玲. 大豆膳食纤维的超声提取及性质研究[D]. 合肥: 合肥工业大学, 2010: 41-49.
[21] 沈杰. 黑豆豆渣不溶性膳食纤维硫酸酯制备及其功能性质[D]. 扬州: 扬州大学, 2015: 23-31.
[22] CHEN Sheng-nan, JIANG Lian-zhou, YANG Li, et al. Ultrasound-assisted enzymatic extraction of dietary fiber from pods[J]. Procedia Engineering, 2011, 15(2): 5 056-5 061.
[23] 杨梦曦, 朱叶, 邓雪盈, 等. 复合酶法提取豆渣膳食纤维的研究[J]. 食品与机械, 2014, 30(4): 186-189.
[24] QIAN Jian-ya, DING Xiao-ling. Effect of twin-screw extrusion on the functional properties of soya fibre[J]. Journal of the Science of Food and Agriculture, 1996, 71(1): 64-68.
[25] KAYA E, TUNCEL N B. The effect of ultrasound on some properties of pulse hulls[J]. Journal of Food Science and Technology, 2017, 54(9): 2 779-2 788.