•  
  •  
 

Abstract

Using vinegar as the main raw material to produce xylanase by solid-state fermentation of Neurospora sitophila. Using the activities of xylanase as indicators, the medium and culture conditions were optimized by single factor experiment and orthogonal experiment. Results: The medium consisted of 5 g of vinegar and 0.4 g of bean dregs. The initial pH of the medium was 5.5, 106 spores/Bottle of inoculum concentration and the solid-liquid ratio was 1∶3 (g/mL), and the culture medium was cultured at 28 ℃ for 3 d. The enzyme activity was 412.34 U/g under the optimized conditions, which was increased about 3.59 times than that before optimization (114.95 U/g).

Publication Date

10-28-2019

First Page

214

Last Page

217,222

DOI

10.13652/j.issn.1003-5788.2019.10.044

References

[1] COLLINS T, GERDAY C, FELLER G. Xylanases, xylanases families and extremophilic xylanases[J]. FEMS Microbiol Rev, 2005, 29(1): 3-23.
[2] MAITY C, GHOSH K, HALDER S K, et al. Xylanase isozymes from the newly isolated Bacillus sp. CKBx1D and optimization of its deinking potentiality[J]. Applied Biochemistry and Biotechnology, 2012, 167(5): 1 208-1 219.
[3] VINOD K N, RANI M E, GUNASEELI R, et al. Paper pulp modification and deinking efficiency of cellulase-xylanase complex from Escherichia coli SD5[J]. International Journal of Biological Macromolecules, 2018, 111(9): 289-295.
[4] YANG Ming, ZHANG Jun-hua, KUITTINEN S, et al. Enhanced sugar production from pretreated barley straw by additive xylanase and surfactants in enzymatic hydrolysis for acetone-butanol-ethanol fermentation[J]. Bioresource Technology, 2015, 189(8): 131-137.
[5] ADIGUZEL G, FAIZ O, SISECIOGLU M, et al. A novel endo-β-1,4-xylanase from Pediococcus acidilactici GC25: Purification, characterization and application in clarification of fruit juices[J]. International Journal of Biological Macromolecules, 2019, 129(10): 571-578.
[6] ZHAI Heng-xiao, LUO Yan-hong, REN Wen, et al. Digestible energy of a corn-soybean meal-based diet supplemented with xylanase for nursery pigs in metabolism crates and floor pens[J]. Livestock Science, 2018, 218(12): 65-69.
[7] SENA L M, MORAIS C G, LOPES M R, et al. D-Xylose fermentation, xylitol production and xylanase activities by seven new species of Sugiyamaella[J]. Antonie Van Leeuwenhoek, 2017, 110(1): 1-15.
[8] 澳新食品标准局. 澳新拟批准来自里氏木霉转基因菌株的木聚糖酶作为加工助剂. (2019-01-03) [2019-05-28]. http://news.foodmate.net/2019/01/501066.html.
[9] 田波, 赵顺华, 张俊红, 等. 醋糟资源化利用研究进展[J]. 中国酿造, 2017, 36(3): 1-4.
[10] SOLOMONS G L. Submerged culture production of mycelial biomass[M]. London: Edward Arnold, 1975: 249-264.
[11] DAVID D P, ROWLAND H D. Evidence for safety of Neurospora Species for academic and commercial uses[J]. Applied and Environmental Microbiology, 2000, 66(12): 5 107-5 109.
[12] OGUNTIMEIN G, VLACH D, MOOYOUNG M. Production of cellulolytic enzymes by Neurospora sitophila grown on cellulosic materials[J]. Bioresource Technology, 1992, 39(3): 277-283.
[13] SHOJAOSADATI S A, FARAIDOUNI R, MADADI-NOUEI A, et al. Protein enrichment of lignocellulosic substrates by solid state fermentation using Neurospora sitophila[J]. Resources Conservation and Recycling, 1999, 27(1/2): 73-87.
[14] HANSEN G, FRISVAD J, ANDERSEN B, et al. Production of cellulolytic enzymes from ascomycetes: Comparison of solid state and submerged fermentation[J]. Process BioChemistry, 2015, 50(9): 1 327-1 341.
[15] 宫晓, 郑喜群, 刘晓兰, 等. 脉孢霉固体发酵产木聚糖酶的条件研究[J]. 粮食与饲料工业, 2015, 12(6): 51-55.
[16] 邓永平, 刘晓兰, 艾瑞波, 等. 好食脉孢霉液态发酵产木聚糖酶的研究[J]. 饲料工业, 2013, 34(2): 45-48.
[17] LI Yan-jun, PENG Xiao-wei, CHEN Hong-zhang. Comparative characterization of proteins secreted by Neurospora sitophila in solid-state and submerged fermentation[J]. Journal of Bioscience and Bioengineering, 2013, 116(4): 493-498.
[18] 周德庆, 徐德强. 微生物学实验教程[M]. 3版. 北京: 高等教育出版社, 2013: 350.
[19] 毕韬韬, 吴广辉, 高愿军. 豆渣深加工研究进展[J]. 食品研究与开发, 2011, 32(6): 149-152.
[20] 高大响, 黄小忠. 1株黑曲霉固态发酵豆渣生产纤维素酶及淀粉酶工艺的优化[J]. 江苏农业科学, 2017, 45(22): 218-220.
[21] PANDEY A, SOCCOL C R, LARROCHE C. Current developments in solid-state fermentation:Water relations in solid-state fermentation (Gervais P.) [M]. Springer New York, 2008: 74-116.
[22] KRISHNA C. Solid-state fermentation systems: An overvi-ew[J]. Critical Reviews in Biotechnology, 2005, 25(1): 1-30.
[23] GARCIA N F L, DA SILVA SANTOS F R, GONALVES F A, et al. Production of β-glucosidase on solid-state fermentation by Lichtheimia ramosa in agroindustrial residues: Characterization and catalytic properties of the enzymatic extract[J]. Electronic Journal of Biotechnology, 2015, 18(4): 314-319.
[24] RAJOKA M I, HUMA T, KHALID A M, et al. Kinetics of enhanced substrate consumption and endo-β-xylanase production by a mutant derivative of Humicola lanuginosain solid-state fermentation[J]. World Journal of Microbiology & Biotechnology, 2005, 21(6/7): 869-876.
[25] XU Xiang-qun, LIN Meng-meng, ZANG Qiang, et al. Solid state bioconversion of lignocellulosic residues by Inonotus obliquus for production of cellulolytic enzymes and saccharification[J]. Bioresource Technology, 2018, 247(8): 88-95.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.