Abstract
In this study, the contents of glucose, glycerol, ethanol and organic acids in the fermentation process of three Saccharomyces cerevisiae were determined by high performance liquid chromatography (HPLC). The results showed that the content of glycerol and ethanol in S. cerevisiae 1946 was significantly higher than that in S. cerevisiae P1 and S. cerevisiae 32788 (P<0.05). The seven organic acids in the three kinds of S. cerevisiae fermentation broth have obvious differences and regularity. The content of organic acids in S. cerevisiae 1946 was lower than that in S. cerevisiae P1 and S. cerevisiae 32788. The acid production level of S. cerevisiae was negatively correlated with ethanol production capacity.
Publication Date
10-28-2019
First Page
24
Last Page
28
DOI
10.13652/j.issn.1003-5788.2019.10.005
Recommended Citation
Fangyi, PEI; Ming, JIANG; Yanshi, MA; Xue, CHEN; Zhenyan, LIU; Xi, LIU; and Xiaoting, CHEN
(2019)
"Analysis of organic acid contents in three kind of Saccharomyces cerevisiae,"
Food and Machinery: Vol. 35:
Iss.
10, Article 5.
DOI: 10.13652/j.issn.1003-5788.2019.10.005
Available at:
https://www.ifoodmm.cn/journal/vol35/iss10/5
References
[1] LEVISSON M, PATINIOS C, HEIN S, et al. Engineering de novo anthocyanin production in Saccharomyces cerevisiae[J]. Microbial Cell Factories, 2018, 17(1): 103.
[2] PREZ-TORRADO R, BARRIO E, QUEROL A. Alternative yeasts for winemaking: Saccharomyces non-cerevisiae and its hybrids[J]. Critical Reviews in Food Science and Nutrition, 2018, 58(11): 1 780-1 790.
[3] VALERA M J, MORCILLO-PARRA M , ZAGRSKA I, et al. Effects of melatonin and tryptophol addition on fermentations carried out by Saccharomyces cerevisiae and non-Saccharomyces yeast species under different nitrogen conditions[J]. International Journal of Food Microbiology, 2019, 289: 174-181.
[4] LAI H, CHIOU J G, ZHURIKHINA A, et al. Temporal regulation of morphogenetic events in Saccharomyces cerevisiae[J]. Molecular Biology of the Cell, 2018, 29(17): 2 069-2 083.
[5] 王志坚. 啤酒中有机酸及其对啤酒风味的影响[J]. 酿酒科技, 2006(9): 121-122.
[6] SU Xue-qian, WU Feng-feng, ZHANG Yu-qing, et al. Effect of organic acids on bread quality improvement[J]. Food Chemistry, 2019, 278: 267-275.
[7] 贾洪锋. 发酵辣椒中风味物质的研究[D]. 重庆: 西南大学, 2007: 5-6.
[8] 杨春霞, 刘元柏, 葛谦. 贺兰山东麓酿酒葡萄中有机酸含量分析[J]. 食品科技, 2016, 41(11): 244-247.
[9] SAMARASEKARA D, HILL C, MLSNA D. Analysis and identification of major organic acids in wine and fruit juices by paper chromatography[J]. Journal of Chemical Education, 2018, 95(9): 1 621-1 625.
[10] 史春云, 田晶, 马延和, 等. 反相高效液相色谱法测定嗜碱微生物发酵液中的有机酸[J]. 食品与发酵工业, 2007, 33(4): 116-118.
[11] 王刚, 王涛, 潘德林, 等. 不同品种猕猴桃果实有机酸组分及含量分析[J]. 农学学报, 2017, 7(12): 81-84.
[12] ZHAO Dan, DU Ren-peng, GE Jing-ping, et al. Impact of Lactobacillus paracasei HD1.7 as a starter culture on characteristics of fermented Chinese cabbage (Brassica rapa var. pekinensis)[J]. Food Science and Technology Research, 2016, 22(3): 325-330.
[13] 杜仁鹏, 赵丹, 宋刚, 等. 高产乙醇酵母菌株的筛选及产醇发酵条件研究[J]. 黑龙江大学自然科学学报, 2017, 34(5): 575-583.
[14] 黄守锋, 裴芳艺, 王长丽, 等. 利用酿酒酵母工程菌株生产2,3-丁二醇的研究进展[J]. 食品安全质量检测学报, 2015(10): 3 928-3 934.
[15] GONZLEZ E, FERNNDEZ M R, MARCO D, et al. Role of Saccharomyces cerevisiae oxidoreductases Bdh1p and Ara1p in the metabolism of acetoin and 2, 3-butanediol[J]. Appl Environ Microbiol, 2010, 76(3): 670-679.
[16] JIANG Chun-mei, CHEN Xian-qing, LEI Shu-zhen, et al. Fungal spores promote the glycerol production of Saccharomyces cerevisiae by upregulating the oxidative balance pathway[J]. Journal of Agricultural and Food Chemistry, 2018, 66(12): 3 188-3 198.
[17] 袁文杰, 孔亮, 孜力汗, 等. 高效液相色谱法测定克鲁维酵母菊芋发酵液中的乙醇、糖和有机酸类代谢成分[J]. 分析化学, 2009, 37(6): 850-854.
[18] 张秋美, 赵心清, 姜如娇, 等. 酿酒酵母乙醇耐性的分子机制及基因工程改造[J]. 生物工程学报, 2009, 25(4): 481-487.
[19] 黄媛媛. 酿酒酵母的筛选及发酵性能的比较[J]. 酿酒科技, 2019(2): 40-43, 48.
[20] 罗凤莲, 夏延斌, 文新昱. 不同发酵条件对剁辣椒中有机酸种类及含量的影响[J]. 食品科技, 2015, 40(11): 48-52.
[21] 张利, 成建国, 张善飞, 等. 不同代数酿酒酵母对有机酸代谢的影响[J]. 食品工业科技, 2012, 33(9): 202-204, 208.
[22] 梁璋成, 何志刚, 林晓婕, 等. 黄酒酿造酵母菌发酵过程的有机酸代谢研究[J]. 福建农业学报, 2016, 31(3): 289-292.