•  
  •  
 

Abstract

The TG and XTG with a total concentration of 1% were compounded according to different quality ratios. Then the gel properties and rheological properties of the compound system were determined by the texture analyzer and the rheometer, and flow curves were analyzed by using Carreau model. the forming mechanism of compound system network was analyzed by scanning electron microscopy(SEM). The texture analysis indicated that the maximum gel strength was obtained when TG/XTG quality ratio was 6∶4, Moreover, there was the maximum G’ in frequency scanning and temperature scanning. As a result, the best compound quality ratio between TG and XTG was 6∶4. The viscosity of the best compound ratio kept relatively stable within the range of pH 5~10. After adding salty ions(Na+, Ca2+), viscosity of the compound system was reduced. The reduction tendency of Ca2+ was more significant. Analysis by SEM showed that there was a significant synergistic effect between TG and XTG, which formed a good gel network structure.

Publication Date

11-28-2019

First Page

34

Last Page

40,158

DOI

10.13652/j.issn.1003-5788.2019.11.008

References

[1] 尹胜利, 陈艳燕, 孙瑾, 等. 新型食品添加剂增稠剂——刺云实胶的特性及其在食品中的应用[J]. 中国食品添加剂, 2007(4): 108-109.
[2] FARHOOSH R, RIAZI A. A compositional study on two current types of salep in Iran and their rheological properties as a function of concentration and temperature[J]. Food Hydrocolloids, 2007, 21(4): 660-666.
[3] SITTIKIJYOTHIN W, SAMPAIO P, GONALVES M P. Heat-induced gelation of -lactoglobulin at varying pH: Effect of tara gum on the rheological and structural properties of the gels[J]. Food Hydrocolloids, 2007, 21(7): 1 046-1 055.
[4] 王晓珊, 袁毅, 龚静妮, 等. 刺云实胶/魔芋葡甘聚糖复合凝胶流变性能[J]. 精细化工, 2018, 35(10): 1 707-1 712.
[5] 普凤仙, 张建云, 包松莲, 等. 塔拉胶理化性质分析[J]. 西部林业科学, 2018, 47(1): 11-17.
[6] LEE H Y, JO W, YOO B. Rheological and microstructural characteristics of rice starch–tara gum mixtures[J]. International Journal of Food Properties, 2017, 20: 1 879-1 889.
[7] WU Yan-bei, DING Wei-Jia, HE Qiang, et al. The rheological properties of tara gum (Caesalpinia spinosa)[J]. Food Chemistry, 2015, 168: 366-371.
[8] GARCAOCHOA F, SANTOS V E, CASAS J A, et al. Xanthan gum: Production, recovery, and properties[J]. Biotechnology Advances, 2000, 18(7): 549-579.
[9] ESPERT M, SALVADOR A, SANZ T. Rheological and microstructuralbehaviour of xanthan gum and xanthan gum-Tween 80 emulsions during in vitro digestion[J]. Food Hydrocolloids, 2019, 95: 454-461.
[10] MARTNEZ-PADILLA L P, LPEZ-ARAIZA F, TECANTE A. Steady and oscillatory shear behavior of fluid gels formed by binary mixtures of xanthan and gellan[J]. Food Hydrocolloids, 2004, 18(3): 471-481.
[11] 魏燕霞, 谢瑞, 郭肖, 等. 刺槐豆胶与黄原胶复配体系的流变性[J]. 食品科学, 2017, 38(1): 149-153.
[12] 赵正涛, 王秀菊, 安鑫, 等. 黄原胶流变学特性及其协效性研究[J]. 中国食品添加剂, 2009(6): 76-81.
[13] 王元兰, 黄寿恩, 李忠海. 黄原胶与瓜尔豆胶混胶黏度的影响因素及微结构研究[J]. 中国食品学报, 2009, 9(4): 118-123.
[14] 蒋建新, 朱莉伟, 张卫明, 等. 塔拉多糖胶的研究[J]. 西南林学院学报, 2003(4): 12-16.
[15] WU Yan-bei, DING Wei-jia, HE Qiang, et al. The rheological properties of tara gum (Caesalpinia spinosa)[J]. Food Chemistry, 2015, 168: 366-371.
[16] AHMED J, RAMASWAMY H S. Effect of high-hydrostatic pressure and concentration on rheological characteristics of xanthan gum[J]. Food Hydrocolloids, 2004(3): 367-373.
[17] MILAS M, RINAUDO M, TINLAND B, et al. Evidence for a single stranded xanthan chain by electron microscopy[J]. Polymer Bulletin, 1988, 19(6): 567-572.
[18] XIONG Yao, LI Qian-ru, MIAO Song, et al. Effect of ultrasound on physicochemical properties of emulsion stabilized by fish myofibrillar protein and xanthan gum[J]. Innovative Food Science and Emerging Technologies, 2019, 54: 225-234.
[19] NWOKOCHA L M, WILLIAMS P A. Hydrodynamic and rheological properties of Irvingia gabonensis gum[J]. Carbohydrate Polymers, 2014, 114: 352-356.
[20] 郭杰, 郭肖, 张朝阳, 等. 刺槐豆胶/瓜尔豆胶复合体系的流变学性质研究[J]. 食品工业科技, 2017(14): 40-45.
[21] MELETHARAYIL G H, PATEL H A, METZGER L E, et al. Influence of partially demineralized milk proteins on rheological properties and microstructure of acid gels[J]. Journal of Dairy Science, 2018, 101(3): 1 864-1 871.
[22] VICINI S, CASTELLANO M, MAURI M, et al. Gelling process for sodium alginate: New technical approach by using calcium rich micro-spheres[J]. Carbohydrate Polymers, 2015, 134: 767-774.
[23] NAKAUMA M, FUNAMI T, FANG Ya-peng, et al. Calcium binding and calcium-induced gelation of normal low-methoxyl pectin modified by low molecular-weight polyuronate fraction[J]. Food Hydrocolloids, 2017, 69: 318-328.
[24] 曾瑞琪, 李苇舟, 赵欣, 等. 魔芋胶—黄原胶复配体系流变学特性及其凝胶形成动力学分析[J]. 食品科学, 2018, 39(9): 39-46.
[25] 朱建华, 邹秀容, 丘秀珍, 等. 蔗糖共溶质对琼脂—魔芋胶共混体系溶胶—凝胶转变过程流变学性质及结构形成动力学的影响[J]. 食品科学, 2019(12): 37-45.
[26] 傅玉颖, 沈亚丽, 陈国文, 等. Na+和Ca2+浓度对魔芋葡甘聚糖与黄原胶凝胶动态流变特性的影响[J]. 农业工程学报, 2018, 34(1): 301-307.
[27] 朱慧, 吴伟都, 潘永明, 等. 黄原胶与阴离子瓜尔胶复配溶液的流变特性研究[J]. 中国食品学报, 2014, 14(5): 55-62.
[28] HIGIRO J, HERALD T J S. Rheological study of xanthan and locust bean gum interaction in dilute solution[J]. Food Research International, 2006, 39(2): 165-175.
[29] 周盛华. 黄原胶在水溶液中的构象转变及其流变学研究[D]. 上海: 上海交通大学, 2008: 14-16.
[30] 吴伟都, 王雅琼, 朱慧, 等. 二价离子对黄原胶溶液流变特性的影响研究[J]. 食品科技, 2012(7): 224-228.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.