Abstract
Based on the traditional experience of liquor-receiving according to liquor hop, Computer vision is used instead of human eyes, the video images of liquor-receiving is captured by CCD, and the images of hops with different liquor degrees are preprocessed by histogram equalization and image corrosion to eliminate the influence of high light noise. Then hops contour is compared with different edge detection algorithms. Besides, the combination of OTSU algorithm and Canny edge detection algorithm can better realize the segmentation of hops and background, and clear edge contour is extracted. Through the pattern recognition of Daqing flower and Xiaoqing flower images, an effective grading basis for liquor-receiving automation is provided. This intelligent grading method can improve the stability and accuracy of the graded liquor-receiving process, and it is easy to realize the intelligent automation of the graded liquor-receiving process.
Publication Date
12-28-2019
First Page
52
Last Page
55,145
DOI
10.13652/j.issn.1003-5788.2019.12.010
Recommended Citation
Jingxian, YANG and Xiaohong, REN
(2019)
"Liquor hop contour detection based on image processing,"
Food and Machinery: Vol. 35:
Iss.
12, Article 10.
DOI: 10.13652/j.issn.1003-5788.2019.12.010
Available at:
https://www.ifoodmm.cn/journal/vol35/iss12/10
References
[1] 梁秀璟. 孟庆才: 白酒行业的智能化改造之路还很长[J]. 自动化博览, 2016, 33(4): 40-42.
[2] 谢永文, 肖曙光, 谢永俊, 等. 论传统白酒酿造向机械智能化酿造设备成套生产线转型的必要性[J]. 酿酒科技, 2014(1): 63-64.
[3] 刘选成, 张东跃, 赵德义, 等. 数字化酿造工艺管理系统在浓香型白酒机械化、自动化和智能化酿造生产中的应用[J]. 酿酒科技, 2018(11): 70-74, 79.
[4] 周金虎. 论传统白酒生产机械化智能化设备[J]. 酿酒, 2017, 44(4): 21-24.
[5] 赵立强, 张东跃, 郭学凤, 等. 浓香型白酒酿造生产自动化智能化简介[J]. 酿酒科技, 2017(4): 82-87.
[6] 刘志江. 七二二所成功“跨界”白酒智能化生产设备行业[J]. 中国军转民, 2018(3): 50.
[7] 徐姿静, 唐清兰, 徐占成, 等. 中国传统白酒工艺技术智能化升级研究[J]. 酿酒, 2017, 44(5): 19-24.
[8] 周海燕, 张宿义, 敖宗华, 等. 白酒摘酒工艺的研究进展[J]. 酿酒科技, 2015(3): 105-107.
[9] 陈林, 庹先国, 张贵宇, 等. 基于酒精度重建模型的摘酒技术研究[J]. 中国酿造, 2019, 38(3): 23-27.
[10] 何盛国, 冯涛, 孙毅, 等. 温度、压力和酒精度控制量质摘酒装置: 中国, 203096042U[P]. 2013-07-31.
[11] 冯涛, 孙毅, 何盛国, 等. 风味物质在线量质摘酒装置: 中国, 203096043U[P]. 2013-07-31.
[12] 韩四海, 郭玉姗, 李璇, 等. 基于近红外光谱技术检测白酒基酒中乙醇含量的研究[J]. 中国酿造, 2018, 37(9): 158-161.
[13] 路江浩, 刘明, 徐姿静, 等. 白酒品尝中挥发性风味物质实时在线检测方法的研究[J]. 中国食品学报, 2018, 18(8): 224-231.
[14] 孙时光, 左勇, 张晶, 等. 酱香型白酒中的风味物质及功效[J]. 中国酿造, 2017, 36(12): 10-13.
[15] 杨国迪. 基于近红外光谱的白酒基酒分析模型的建立[D]. 洛阳: 河南科技大学, 2016: 13-19.
[16] 尚柯, 韩兴林, 王德良, 等. 酱香白酒高温堆积酒醅挥发性风味物质的检测分析[J]. 中国酿造, 2016, 35(2): 139-143.
[17] 李一雷. 一种自适应阈值二值法在泡界线检测中的应用[J]. 浙江交通职业技术学院学报, 2018, 19(1/2): 49-53.
[18] 曹爽. 基于OTSU算法的图像阈值分割技术[D]. 太原: 太原理工大学, 2018: 9.
[19] 燕红文, 邓雪峰. OTSU算法在图像分割中的应用研究[J]. 农业开发与装备, 2018(11): 103, 108.
[20] 赵世峰, 何皙健. 基于OpenCV的复杂环境下图像二值化方法[J]. 电子测量技术, 2018, 41(6): 55-59.
[21] 梁肇峻, 钟俊. 基于Otsu算法与直方图分析的自适应Canny算法的改进[J]. 现代电子技术, 2019, 42(11): 54-58.
[22] 刘丽霞, 李宝文, 王阳萍, 等. 改进Canny边缘检测的遥感影像分割[J]. 计算机工程与应用, 2019, 55(12): 54-58, 180.