Abstract
Surface-enhanced Raman spectroscopy (SERS) using gold (Au) nanoparticles and NaCl solution as SERS enhanced substrate was applied to rapidly identify furaltadone metabolite (AMOZ) and nitrofurantoin metabolite (AHD) residues in chicken samples. The background interference was eliminated by using adaptive iterative re-weighted penalized least squares (air-PLS), and the spectra data was preprocessed by standard normalization. The samples of four groups, i.e. chicken extract containing AHD, AMOZ, AHD and AMOZ, and control, were marked in sequence, and the identification model was established by combining the principal component analysis and linear discriminant analysis (PCA-LDA). The experimental results showed that the correct discriminant rate of the calibration set was 90.48%, and the correct discriminant rate of the prediction set was 94.29%. Consequently, AHD and AMOZ residues in chicken samples could be identified effectively by using SERS and PCA-LDA.
Publication Date
12-28-2019
First Page
96
Last Page
99
DOI
10.13652/j.issn.1003-5788.2019.12.017
Recommended Citation
Hongqing, GUO; Muhua, LIU; Haichao, YUAN; Jinhui, ZHAO; Jinjiang, TAO; Jian, CHEN; and Ning, XU
(2019)
"Identification of nitrofuran metabolites in chicken by using surface-enhanced Raman spectroscopy coupling with principal component analysis-linear discriminant analysis,"
Food and Machinery: Vol. 35:
Iss.
12, Article 17.
DOI: 10.13652/j.issn.1003-5788.2019.12.017
Available at:
https://www.ifoodmm.cn/journal/vol35/iss12/17
References
[1] 侯向昶, 黄金凤, 杜志峰, 等. SPE-LC-MS/MS法检测肉粉中5种硝基呋喃类药物的代谢物[J]. 现代食品科技, 2013, 29(6): 1 381-1 385.
[2] 王明明, 许娜, 唐云, 等. 食品中硝基呋喃类药物残留检测方法的研究进展[J]. 中国畜牧兽医, 2016, 43(8): 2 202-2 207.
[3] VERDON E, COUEDROR P, SANDERS P. Multi-residue monitoring for the simultaneous determination of five nitrofurans (furazolidone, furaltadone, nitrofurazone, nitrofurantoine,nifursol) in poultry muscle tissue through the detection of their five major metabolites (AOZ, AMOZ, SEM, AHD, DNSAH) by liquid chromatography coupled to electrospray tandem mass spectrometry-in-house validation in line with Commission Decision 657/2002/EC[J].Analytica Chimica Acta, 2007, 586(1/2): 336-347.
[4] FRANEK M, DIBLIKOVA I, CERNOCH I, et al. Broad specificity immunoassays for sulfonamide detection: Immunochemical strategy for generic antibodies and competitors[J]. Analytical Chemistry, 2006, 78(5): 1 559-1 567.
[5] FLEISCHMANN M, HENDRA P J, MC QUILLAN A J.Raman spectra of pyridine adsorbed at a silver electrode[J]. Chemical Physics Letters, 1974, 26(2): 163-166.
[6] 樊玉霞, 赖克强, 黄轶群. 表面增强拉曼光谱技术在食品痕量化学危害检测中的应用[J]. 光谱学与光谱分析, 2014, 34(7): 1 859-1 864.
[7] JEANMARIE D L, VAN DUYNE R P. Surface Raman spectroelectrochemistry[J]. Journal of Electroanalytical Chemistry, 1977, 84(1): 1-20.
[8] 张璐涛, 周光明, 罗丹, 等. 表面增强拉曼光谱快速检测蜂蜜中的金霉素残留[J]. 高等学校化学学报, 2018, 39(8): 1 662-1 667.
[9] 陈阳, 严霞, 张旭, 等. 基于支持向量机算法的多环芳烃表面增强拉曼光谱的定量分析[J]. 中国激光, 2019, 46(3): 298-305.
[10] 徐天扬, 杨娟, 孙晓荣, 等. 中红外光谱法结合支持向量机快速鉴别蜂蜜品种[J]. 激光与光电子学进展, 2018, 55(6): 431-439.
[11] 李康, 张毛毛, 杨忠, 等. 基于神经网络的人造板装饰纸表面色泽特征分类研究[J]. 林业工程学报, 2018, 3(1): 16-20.
[12] 樊双喜, 钟其顶, 黄占斌, 等. 基于非目标~1H NMR指纹图谱技术验证中国葡萄酒原产地[J]. 食品与发酵工业, 2018, 44(2): 1-11.
[13] 白云慧, 温海超, 张磊, 等. 基于酚类化合物组成差异的7类植物油脂识别研究[J]. 食品科学, 2017, 39(2): 1-13.
[14] 张新新, 李雨, 纪玉佳, 等. 主成分—线性判别分析在中药药性识别中的应用[J]. 山东大学学报: 医学版, 2012, 50(1): 143-146.
[15] 张芳, 周昊, 徐蓉, 等. 红外光谱结合PCA-LDA判别道地和非道地山药[J]. 江苏农业科学, 2018, 46(24): 217-220.
[16] 余婉松. 基于金属溶胶表面增强拉曼光谱技术检测饲料及水产品中呋喃唑酮和孔雀石绿的研究[D]. 上海: 上海海洋大学, 2015: 11.
[17] 郭红青, 刘木华, 袁海超, 等. 应用表面增强拉曼光谱法快速检测鸭肉中呋喃它酮代谢物残留[J]. 分析实验室, 2017, 36(10): 1 141-1 145.
[18] CHEN Jian, LIU Mu-hua, YUAN Hai-chao, et al. Surface-enhanced Raman spectroscopy for classification of testosterone propionate and nandrolone residues in chicken[J]. Vibrational Spectroscopy, 2018, 99: 7-12.
[19] 郭英姿, 贾文庆, 刘会超, 等. 32个品种芍药观赏性状的主成分分析[J]. 北方园艺, 2018, 42(4): 110-116.
[20] 卢明艳, 潘越, 安鹭, 等. 基于因子分析的加工型苹果品质性状的综合评价[J]. 江苏农业学报, 2018, 34(1): 130-137.