Abstract
Conditions for the production of Chinese quinoa rice wine by liquefaction method were optimized using Qingli 2 as raw material, and the changes of antioxidant characteristics of the fermentation liquid were studied. Results showed that quinoa optimized liquefaction parameters were: high temperature α-amylase dosage of 6 U/g, liquefaction temperature 95 ℃, time 50 min. The optimal saccharification processes for quinoa was saccharification enzyme dosage of 100 U/g, saccharification temperature of 70 ℃ and saccharification time of 150 min. The best main fermentation conditions of the quinoa saccharide were: material to water ratio of 1∶4 (g/mL), yeast addition amount of 4.0%, and the fermentation temperature of 30 ℃. The phenolic compounds increased first and then decreased during the main fermentation period, and the total phenolic and total flavonoids content reached the maximum of 163.75 and 14.00 μmol/100 g·DW, respectively. During the fermentation period of 1~8 d, polypeptide content also increased first and then decreased, and further tended to be stabilized. The maximum polypeptide content of 4.95 g/L was obtained at fermentation 4th day. DPPH and ABTS+ free radicals scavenging activity of the quinoa fermentation liquid were the highest at the 3rd and 4th day, respective-ly. While it’s FRAP iron reducing power remained at a high level at the first 1~3 d, and decreased to 12.86 μmol/100 g·DW at 7~8 d and tented to be stable. Dynamic changes of these active substances might be the important material basis for the formation of Chinese quinoa rice wine anti-oxidation activity.
Publication Date
12-28-2019
First Page
174
Last Page
178,226
DOI
10.13652/j.issn.1003-5788.2019.12.032
Recommended Citation
Wengang, ZHANG; Jie, ZHANG; Bin, DANG; and Xijuan, YANG
(2019)
"Optimization on fermentation conditions and the antioxidant characteristics of Chinese quinoa rice wine,"
Food and Machinery: Vol. 35:
Iss.
12, Article 32.
DOI: 10.13652/j.issn.1003-5788.2019.12.032
Available at:
https://www.ifoodmm.cn/journal/vol35/iss12/32
References
[1] 申瑞玲, 张文杰, 董吉林, 等. 藜麦的营养成分、健康促进作用及其在食品工业中的应用[J]. 中国粮油学报, 2016, 31(9): 151-155.
[2] 梁军林, 李霞, 李嘉弈, 等. 藜麦产品研发现状及前景[J]. 粮食加工, 2017, 42(6): 64-67.
[3] 魏爱春, 杨修仕, 么杨, 等. 藜麦营养功能成分及生物活性研究进展[J]. 食品科学, 2015, 36(15): 272-276.
[4] 肖正春, 张广伦. 藜麦及其资源开发利用[J]. 中国野生植物资源, 2014, 33(2): 62-66.
[5] 张惠芸, 陈俊亮, 康怀彬. 发酵对几种谷物提取物总酚及抗氧化活性的影响[J]. 食品科学, 2014, 35(11): 195-199.
[6] 郭睿, 杨玲, 郭旭凯, 等. 糯高粱黄酒糖化工艺优化及抗氧化活性分析[J]. 中国酿造, 2018, 37(3): 101-106.
[7] 刘浩, 胡一波, 任贵兴. 杂粮黄酒的氨基酸组成评价及抗氧化研究[J]. 食品工业科技, 2015, 36(19): 343-351.
[8] 谭斌, 谭洪卓, 刘明, 等. 我国全谷物食品发展的必要性与挑战[J]. 粮食与食品工业, 2009, 16(4): 4-8.
[9] 常青, 张立国. 酶法甜荞黄酒生产工艺改进分析[J]. 酿酒, 2017, 44(1): 98-100.
[10] 易晓成, 万萍, 李雄波, 等. 青稞干黄酒传统发酵工艺研究[J]. 中国酿造, 2018, 37(8): 128-132.
[11] 刘浩, 任贵兴. 液化法酿造燕麦黄酒工艺条件优化[J]. 中国酿造, 2014, 33(8): 67-74.[12] 杨祖滔, 吴天祥, 朱思洁, 等. 薏米糯米黄酒酿造工艺条件的研究[J]. 中国酿造, 2016, 35(5): 102-106.
[13] 倪莉, 吕旭聪, 黄志清, 等. 黄酒的生理功效及其生理活性物资和研究进展[J]. 中国食品学报, 2012, 12(3): 1-6.
[14] 汤尚文, 豁银强, 吴进菊, 等. 黄酒的抗氧化作用及其相应成分的研究进展[J]. 食品工业科技, 2014, 35(9): 396-400.
[15] 曾霞, 陆燕, 曹建平, 等. 桑椹酒发酵工艺优化及其主要香气成分分析[J]. 酿酒科技, 2016(1): 120-124.
[16] ADOM K K, SORRELLS M E, LIU Rui-hai. Phytochemical profiles and antioxidant activity of wheat varieties[J]. Journal of Agricultural and Food Chemistry, 2003, 51(26): 7 825-7 834.
[17] 康俊杰, 陈树俊, 田津瑞, 等. 优质复配蛋白酶解工艺研究[J]. 山西农业科学, 2015, 43(7): 892-896.
[18] ABU BAKAR M F, MOHAMED M, RAHMAT A, et al. Phytochemicals and antioxidant activity of different parts of bambangan (Mangifera pajang) and tarap (Artocarpus odoratissimus)[J]. Food Chemistry, 2009, 113: 479-483.
[19] RE R, PELLEGRINI N, PROTEGGENTE A, et al. Antioxidant activity applyingan improved ABTS radical cation decolorization assay[J]. Free Radical Biology and Medicine, 1999, 26(9): 1 231-1 237.
[20] BENZIE I F F, STRAIN J J. The ferric reducing ability of plasma (FRAP) as a measure of “Antioxidant Power”: The FRAP assay[J]. Analytical Biochemistry, 1996, 239: 70-76.
[21] 付艳丽, 周霞, 苏畅. 荞麦黑米酒液化及糖化工艺的研究[J]. 食品工业, 2013, 34(5): 100-103.
[22] 王行, 张海宁, 马永昆, 等. 蓝莓酒发酵过程中酚类物质动态变化及其抗氧化活性研究[J]. 现代食品科技, 2015, 31(1): 90-95.