Abstract
In the online detection process of the bearing hole of the trajectory control part of a beverage filling equipment without fixture positioning, an single picture isn't enough for the high-precision detection measuring. This paper proposes a 2 steps method: feature recognition from the overall visual and high resolution local image obtaining by image stitching. Firstly, the feature description matrix is constructed by the central position relationship of the global image bearing hole, and the overall feature hole recognition is performed by the support vector machine (SVM) method. Secondly, for the identified bearing holes, the KAZE method is used to splicing the local feature hole images to achieve high-precision measurement of the bearing holes. Research examples show that the method can quickly achieve high-precision measurement of bearing bores with high measurement efficiency and success rate.
Publication Date
2-28-2019
First Page
117
Last Page
122
DOI
10.13652/j.issn.1003-5788.2019.02.023
Recommended Citation
Yuyuan, WANG; Jie, XU; Weixi, JI; Wei, PENG; and Meng, DU
(2019)
"Online Inspection of Part's Bearing Holes from Feature Recognition to Partial Stitching,"
Food and Machinery: Vol. 35:
Iss.
2, Article 23.
DOI: 10.13652/j.issn.1003-5788.2019.02.023
Available at:
https://www.ifoodmm.cn/journal/vol35/iss2/23
References
[1] 王耀南, 陈铁健, 贺振东, 等. 智能制造装备视觉检测控制方法综述[J]. 控制理论与应用, 2015(3): 273-286.
[2] LOWE D G. Distinctive Image Features from Scale-Invariant Keypoints[J]. International Journal of Computer Vision, 2004, 60(2): 91-110.
[3] 刘立, 詹茵茵, 罗扬, 等. 尺度不变特征变换算子综述[J]. 中国图象图形学报, 2013(8): 885-892.
[4] WANG Fu-bin, TU Paul, CHEN Wu, et al. Multi-image mosaic with SIFT and vision measurement for microscale structures processed by femtosecond laser[J]. Optics and Lasers in Engineering, 2018, 100: 124-130.
[5] YANG Kun, PAN An-ning, YANG Yang, et al. Remote sensing image registration using multiple image features[J]. Remote Sensing, 2017, 9(6): 581-601.
[6] ALCANTARILLA P F, BARTOLI A, DAVISON A J. KAZE features[C]// FITZGIBBON A, LAZEBNIK S, PERONA P, et al. Computer. Vision-ECCV 2012. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012: 214-227.
[7] 杨婷婷, 顾梅花, 章为川, 等. 彩色图像边缘检测研究综述[J]. 计算机应用研究, 2015(9): 2 566-2 571.
[8] MUKHOPADHYAY P, CHAUDHURI B B. A survey of Hough Transform[J]. Pattern Recognition, 2015, 48(3): 993-1 010.
[9] 张雨浓, 陈锦浩, 劳稳超, 等. 多类单输入多项式神经网络预测能力比较[J]. 系统仿真学报, 2014(1): 90-96.
[10] LUI Han, COCEA M. Induction of classification rules by Gini-index based rule generation[J]. Information Sciences, 2018, 436-437: 227-246.
[11] 郭明玮, 赵宇宙, 项俊平, 等. 基于支持向量机的目标检测算法综述[J]. 控制与决策, 2014(2): 193-200.
[12] 邱光应, 彭桂兰, 陶丹, 等. 基于决策树支持向量机的苹果表面缺陷识别[J]. 食品与机械, 2017, 33(9): 131-135.
[13] 刘洋, 王涛, 左月明. 基于支持向量机的野生蘑菇近红外识别模型[J]. 食品与机械, 2016, 32(4): 92-94.
[14] WU Yi-chao, LIU Yu-feng. Robust Truncated Hinge Loss Support Vector Machines[J]. Journal of the American Statistical Association, 2007, 102(479): 974-983.
[15] HAMID N, YAHYA A, AHMAD R B, et al. A Comparison between Using SIFT and SURF for Characteristic Region Based Image Steganography[J]. International Journal of Computer Science Issues, 2012, 9(3): 110.
[16] 汪方斌, 储朱涛, 朱达荣, 等. 一种改进的KAZE特征检测描述算法[J]. 激光与光电子学进展, 2018, 55(9): 165-172.