Abstract
Fresh Xiang lotus, the relative parameters of fresh lotus seeds affecting the precision of mechanical core removal were measured and analyzed. A model of the section circle of fresh lotus seed is obtained with the attributes of circle center coordinates, diameter and roundness error, according to the coordinate parameters of each contour point on the same circle of fresh lotus seed. The center coordinates of each section alone the axis of the lotus core are fitted with least square method. A linear equation of lotus geometry axis is established. The measurement model of coaxially error between lotus geometry axis and lotus core axis is developed. Furthermore, an accurate measurement of the contour parameters of each section of the fresh lotus seed is implemented with the coordinate measuring machine. Based on the obtained measurement model, the center, diameter and roundness error values of the fitting circle for each section can be calculated. The measured data shows that the roundness error of fresh lotus along the direction of the lotus core approximates the parabolic law The roundness error is minimal the maximum section circle and vice versa. The average value of the maximum section circle is 0.347 3 mm. Therefore, the contour near the maximum section is chosen as the positioning reference, in order to achieve optimal centering accuracy. Finally, the circle center data of five section fitting circles near the maximum section are selected, based on the proposed approach. An approximate geometric axis of the fresh lotus seed is fitted. The average coaxially error between the geometrical axis of lotus seed and the lotus core axis is 0.914 0 mm. It can be seen that the size of the punch should be at least 0.914 0 mm larger than the size of the lotus core, during the mechanical operation process. The measurement results provide a basic dataset for the development of the mechanical centering machine of the fresh lotus seed. The proposed method also provides a reference for the geometric center measurement of irregular objects, which have similar attribute to lotus seeds.
Publication Date
3-28-2019
First Page
76
Last Page
81,109
DOI
10.13652/j.issn.1003-5788.2019.03.014
Recommended Citation
Qiucheng, MA; Kun, LIU; Hui, LONG; Yan, LI; Junxiong, LI; Gengjun, GUO; Jian, HE; and Jiang, XIAO
(2019)
"Measurement of geometric parameters affecting the positioning accuracy of fresh lotus seeds,"
Food and Machinery: Vol. 35:
Iss.
3, Article 14.
DOI: 10.13652/j.issn.1003-5788.2019.03.014
Available at:
https://www.ifoodmm.cn/journal/vol35/iss3/14
References
[1] 郑宝东, 郑金贵, 曾绍校. 我国主要莲子品种营养成分的分析[J]. 营养学报, 2003, 25(2): 153-156.
[2] ZENG Hong-yan, CAI Lian-hui, CAI Xi-ling. Amino acid profiles and quality from lotus seed proteins[J]. Journal of the Science of Food and Agriculture, 2013, 93(5): 1 070-1 075.
[3] RAJEEVB, KANDIKERE R S. Nutritional quality evaluation of electron beam-irradiated lotus (Nelumbo nucifera) seeds[J]. Food Chemistry, 2008, 107(1): 174-184.
[4] 张永林, 易启伟, 余群, 等. 多联辊刀式莲子剥壳机的结构与工作原理[J]. 农业工程学报, 2008, 24(12): 76-79.
[5] 裴圣华, 饶洪辉, 刘木华. 莲子通芯机研究现状与展望[J]. 中国农机化学报, 2013, 34(6): 43-45.
[6] 刘木华, 吴彦红. 莲子物理机械特性试验研究Ⅰ[J]. 江西农业大学学报, 1999(3): 425-428.
[7] 赵小广, 宗力, 谢丽娟. 干壳莲子物理参数试验研究[J]. 食品与机械, 2006, 22(2): 53-55.
[8] 叶香美. 白莲、红莲物理参数测试与分析[J]. 安徽农学通报, 2006, 12(5): 69-70.
[9] 马秋成, 卢安舸, 陈锴, 等. 莲子机械自动去芯自适应定心技术与样机试验[J]. 农业工程学报, 2014, 30(21): 17-24.
[10] 王文书. 三坐标测量机对同轴度误差测量方法的探索[J]. 制造技术与机床, 2010(11): 94-97.
[11] 潘汉军, 刘娅. 关于同轴度误差定义的分析与探讨[J]. 现代制造工程, 2004(4): 69-70.
[12] 陈立杰, 张镭, 张玉. 同轴度误差的数模研究[J]. 东北大学学报: 自然科学版, 2007, 28(4): 549-552.
[13] 叶宗茂. 用三坐标测量机正确测量同轴度误差[J]. 工具技术, 2007, 41(3): 77-80.
[14] 王亚平, 郏永红. 基于最小二乘原理建立坐标系方法的研究与实现[J]. 计算机测量与控制, 2003, 11(10): 796-798.
[15] 胡川, 陈义, 朱卫东, 等. 整体最小二乘和最小二乘拟合空间直线的比较[J]. 大地测量与地球动力学, 2015, 35(4): 689-692.
[16] 韩庆瑶, 肖强, 乐英. 空间离散点最小二乘法分段直线拟合的研究[J]. 工业仪表与自动化装置, 2012(4): 107-109.
[17] 田社平, 张守愚, 李定学, 等. 平面圆圆心及半径的最小二乘拟合[J]. 中国测试, 1995(5): 23-25.
[18] 姚宜斌, 黄书华, 孔建, 等. 空间直线拟合的整体最小二乘算法[J]. 武汉大学学报: 信息科学版, 2014, 39(5): 571-574.
[19] 张镭, 张玉. 同轴度误差的解析评定法与仿真研究[J]. 计量学报, 1997(1): 32-37.
[20] 孔建, 姚宜斌, 吴寒. 整体最小二乘的迭代解法[J]. 武汉大学学报: 信息科学版, 2010, 35(6): 711-714.