Abstract
This study focused on the optimization of the structure of built-in vertical clapboard in the rapeseed fluidized bed dryer. Based on standard k-ε turbulence model and Euler two-fluid model, the number of region and the arrangement mode of clapboard was optimized through numerical simulation calculating software of Fluent. The results showed that the inhomogeneous three region clapboard was the best built-in vertical clapboard for rapeseed fluidized bed drying, enhancing the circulation of hot air, and reducing hot air accumulation in local areas. Finally, it realized the normal fluidization of gas-particle two-phase flow, and achieved the goal of uniform distribution of rapeseed particles in fluidized bed, without the groove flow and dead zone.
Publication Date
3-28-2019
First Page
82
Last Page
88
DOI
10.13652/j.issn.1003-5788.2019.03.015
Recommended Citation
Cong, WANG; Jianping, ZHANG; Yong, WANG; Wang, HE; and Hangyu, CHEN
(2019)
"Structural design optimization of built-in vertical clapboard for rapeseed fluidized bed dryer,"
Food and Machinery: Vol. 35:
Iss.
3, Article 15.
DOI: 10.13652/j.issn.1003-5788.2019.03.015
Available at:
https://www.ifoodmm.cn/journal/vol35/iss3/15
References
[1] 朱再清. 我国油菜籽及菜子油进口依赖性与进口安全研究[J]. 中国农业大学学报, 2014, 19(4): 253-264.
[2] 韩宝柱, 马献力, 亓校文, 等. 浅析油菜籽干燥技术[J]. 现代化农业, 2001(7): 4-10.
[3] 谢奇珍, 刘进, 师建芳. 我国油菜籽干燥技术的现状及发展趋势[J]. 中国油脂, 2005, 30(5): 18-21.
[4] 杨福进. 流化床干燥大豆的模拟研究[D]. 哈尔滨: 哈尔滨工业大学, 2006: 27-38.
[5] 杨国峰, 丁超, 蔡浩飞, 等. 油菜籽干燥技术研究进展[J]. 中国粮油学报, 2012, 27(5): 124-128.
[6] 杨玲, 杨明金, 郭孟报, 等. 油菜籽热风干燥传热传质与优化的研究进展[J]. 现代食品科技, 2014, 30(7): 306-313.
[7] 和珊, 丁超, 杨国峰, 等. 微波干燥对油菜籽品质及气味成分的影响[J]. 中国粮油学报, 2013, 28(1): 48-54.
[8] 陈箐清, 吕慧侠, 周健平. 流化床干燥设备进展的研究[J]. 中国制药装备, 2009, (3): 10-14.
[9] 邢黎明, 赵争胜. 流化床干燥器的热能利用分析及节能措施[J]. 中国中药杂志, 2012, 37(13): 2 034-2 036.
[10] 王艳, 吴厚材. 振动流化床的特性与使用[J]. 橡塑技术与装备, 2009, 35(6): 33-38.
[11] DEPYPERE Frédéric, PIETERS Jan G, DEWETTINCK Koen. CFD analysis of air distribution in fluidised bed equipment[J]. Powder Technology, 2004, 145(3): 176-189.
[12] AABBA Ibrahim. A generalized fludized bed reactor model across the flow regimes[D]. Vancouver: The University of British Columbia, 2001: 14-33.
[13] 黄立成, 马隆龙, 周肇秋, 等. 隔板式内循环流化床的流动特性研究[J]. 太阳能学报, 2008, 29(7): 900-904.
[14] 江国栋, 魏利平, 吴长松. 隔板式内循环流化床颗粒循环速率实验与模型[J]. 化工学报, 2017, 68(9): 3 427-3 433.
[15] 彭迎彬, 李海广, 龚志军, 等. 内置竖隔板流化床颗粒停留时间分布[J]. 钢铁钒钛, 2015, 36(4): 140-144.
[16] 潘刚, 范勇, 彭迎彬, 等. 内置隔板流化床气固两相流动数值模拟[J]. 钢铁钒钛, 2015, 36(6): 101-107.
[17] 张健平, 卢玉斌, 王晓宏, 等. 油菜籽流化床气体分布板结构参数优化[J]. 农业机械学报, 2016, 47(2): 237-244.
[18] KOCH D L, HILL R J. Inertial effects in suspension and porous-media flows[J]. Annual Review of Fluid Mechanics, 2001, 33(1): 619-647.
[19] TSUO Y P, GIDASPOW D. Computation of flow patterns in circulating fluidized beds[J]. Aiche Journal, 1990, 36(6): 885-896.
[20] SYAMLAL M, O’BRIEN T J. Computer simulation of bubbles in a fluidized bed[J]. AIChE Symposium Series, 1989, 85: 22-31.
[21] LI Peng, LAN Xing-yin, XU Chun-ming, et al. Drag models for simulating gas-solid flow in the turbulent fluidization of FCC particles[J]. Particuology, 2009, 7(4): 269-277.
[22] ZIMMERMANN S, TAGHIPOUR F. CFD modeling of the hydrodynamics and reaction kinetics of FCC fluidized-bed reactors[J]. Ind. Eng. Chem. Res, 2005, 44(26): 9 818-9 827.
[23] MCKEEN T, PUGSLEY T. Simulation and experimental validation of a freely bubbling bed of FCC catalyst[J]. Powder Technology, 2003, 129(1): 139-152.
[24] 刘国栋, 沈志恒, 王帅, 等. 液固流化床中颗粒流动特性的数值模拟[J]. 哈尔滨工业大学学报, 2010, 42(7): 1 108-1 111.
[25] 李占勇, 潘波, 高新源, 等. 脉动气流辅助流化下双组分颗粒的混合特性研究[J]. 农业机械学报, 2015, 46(3): 247-253.
[26] 肖志锋, 吴南星, 刘相东. 过热蒸汽流化床干燥流动特性实验[J]. 农业机械学报, 2013, 44(7): 183-186.
[27] 吴诚, 高希, 成有为, 王丽军, 等. 湍动流化床过渡段固含率分布特征的实验及数值模拟[J]. 化工学报, 2013, 64(3): 858-866.
[28] 宫英振, 牛海霞, 肖志锋, 等. 油菜籽过热蒸汽流化床常压干燥过程的数学模拟[J]. 农业工程学报, 2010, 26(4): 351-356.
[29] 曹崇文, 朱文学. 农产品干燥工艺过程的计算机模拟[M]. 北京: 中国农业出版社, 2001: 45-49.