Abstract
To investigate the protective effect of yak blood oligopeptides on hypoxic injury of H9c2 cardiomyocytes and its mechanism. The hypoxia injury model was established by culturing H9c2 cardiomyocytes in vitro, randomly divided into 5 groups (n=6): normal control group, hypoxia group, low-dose yak blood oligopeptide group, middle-dose yak blood oligopeptide group and high-dose yak blood oligopeptide group. The results showed that: the cell survival rate of hypoxia group was significantly lower than that of control group (P<0.01), the rate of apoptosis was significantly increased (P<0.01), the release level of LDH was significantly increased (P<0.01), mitochondrial membrane potential decreased significantly (P<0.01), which showed that hypoxia could cause damage to H9c2 cardiomyocytes. At the same time, compared with the anoxic group, yak blood oligopeptides could inhibit mitochondrial membrane potential decline, improved the T-AOC level of cells, reduced the level of TNF-α, inhibited the release of cytochrome C, upregulated the expression of anti-apoptotic proteins (Survivin, p-Akt, Akt), decreased the activity of apoptosis protein (Caspase-3/9), and affected the level of mRNA encoding of the above protein. The above results showed that the protective effect of yak blood oligopeptides on H9c2 cardiomyocytes was closely related to the inhibition of PI3K-Akt signal transduction pathway and the protection of mitochondrial structural and functional integrity.
Publication Date
3-28-2019
First Page
159
Last Page
165,188
DOI
10.13652/j.issn.1003-5788.2019.03.029
Recommended Citation
Lan, XIAO; Cheng, LI; Xiaoping, CHENG; and Xin, DU
(2019)
"Effects of yak blood oligopeptides on hypoxia-induced injury of H9c2 cardiomyocytes protection and its mechanism,"
Food and Machinery: Vol. 35:
Iss.
3, Article 29.
DOI: 10.13652/j.issn.1003-5788.2019.03.029
Available at:
https://www.ifoodmm.cn/journal/vol35/iss3/29
References
[1] 魏雅萍, 张才骏. 大通家牦牛及含野血牦牛血清亲血色蛋白多态性的比较研究[J]. 国外畜牧学: 草食家畜, 1996(1): 22-23.
[2] 张才骏, 马凤莲, 李黎, 等. 互助白牦牛血液蛋白质多态性的研究[J]. 青海畜牧兽医杂志, 1996, 26(3): 9-11.
[3] 魏稚萍. 大通家牦牛及含野血牦牛血清运铁蛋白多态性的比较研究[J]. . 甘肃畜牧兽医, 1997, 27(5): 18-19.
[4] 杜昕. 菌酶联合制备牦牛血抗氧化肽及其分离纯化的研究[D]. 雅安: 四川农业大学, 2016: 2-4.
[5] 姚星辰, 许博林, 铁军, 等. 牦牛活性蛋白对小鼠抗缺氧抗疲劳能力及血糖的影响[J]. 时珍国医国药, 2014, 25(11): 2 637-2 639.
[6] BOUNDA G A, ZHOU Wang, WANG Dan-dan, et al. Rhein elicits in titro cytotoxicity in primary human liver HL-7702 cells by inducing apoptosis through mitochondria-mediated pathway[J]. Evidence-Based Complementary and Alternative Medicine, DOI:10.1155/2015/329831.
[7] ZANELLI S A, TRIMMER P A, SOLENSKI N J. Nitric oxide impairs mitochondrial movement in cortical neurons during hypoxia[J]. Journal of Neurochemistry, 2006, 97(3): 724-736.
[8] HERRMANN J M, RIEMER J. The intermembrane space of mitochondria[J]. Antioxidants and Redox Signaling, 2010, 13(9): 1 341-1 358.
[9] JEZEK P, PLECITA-HLAVATA L. Mitochondrial reticul-um network dynamics in relation to oxidatve stress, redox regulation, and hypoxia[J]. International Journal of Biochemistry and Cell Biology, 2009, 41: 1 790-1 804.
[10] ZWINGMANN C, BUTTERWORTH R. An update on the role of brain glutamine synthesis and its relation to cell-specific energy metabosism in the hyperammonemic brain: Further studies using NMR spectroscopy[J]. Neuroc-hemistry International, 2005, 47(1/2): 19-30.
[11] HEISKANEN K M, BHAT M B, WANG Hsing-wen, et al. Mitochondrial depolarization accompanies cytochrome C release during apoptosis in PC6 Cells[J]. Journal of Biological Chemistry, 1999, 274(9): 5 654-5 658.
[12] ADRAIN C, MARTIN S J. The mitochondrial apoptosome: A killer unleashed by the cytochrome seas[J]. Trends in Biochemical Sciences, 2001, 26(6): 390-397.
[13] VARA J F, CASADO E, DE CASTRO J, et al. PI3K/Akt signalling pathway and cancer[J]. Cancer Treatment Reviews, 2004, 30(2): 193-204.
[14] LIAO Ping, SUN Gui-bo, ZHANG Chan, et al. Bauhinia championii flavone attenuates hypoxia-reoxygenation induced apoptosis in H9c2 cardiomyocytes by improving mitochondrial dysfunction[J]. Molecules, 2016, 21(11): 1 469.
[15] COIMBRA-COSTA D, ALVA N, DURAN M, et al. Oxidative stress and apoptosis after acute respiratory hypoxia and reoxygenation in rat brain[J]. Redox Biology, 2017, 12: 216-225.
[16] ALTRERI D C. Targeting survivin in cancer[J]. Cancer Letters, 2013, 332(2SI): 225-228
[17] CONWAY E M, ZWERTS F, VAN EYGEN V, et al. Survivin-depengdent angiogenesis in is chemicbrain: Molecular mechanisms of hyoxia-induced up-regulation[J]. The American Journal of Pathology, 2003, 163(3): 935-946.
[18] HSU S Y, HSUEH A. Tissue-specific Bcl-2 protein partners in apoptosis: An ovarian paradigm[J]. Physiological Reviews, 2000, 80(2): 593-614.
[19] DANIAL N N. BAD: undertaker by night, candyman by day[J]. Oncogene, 2008, 27: S53-S70.
[20] PARIKH N, KOSHY C, DHAYABARAN V, et al. The N-terminus and alpha-5, alpha-6 helices of the pro-apoptotic protein Bax, modulate functional interactions with the anti-apoptotic protein Bcl-XL[J]. BMC Cell Biolgy, 2007, 8(16): 1-16.
[21] KE Qing-dong, COSTA M. Hypoxia-inducible factor-1(HIF-1)[J]. Molecular pharmacology, 2006, 70(5): 1 469-1 480.
[22] ZHANG Xiao-li, YAN Zhen-wen, SHENG Wei-wen, et al. Activation of hypoxia-inducible factor-1 ameliorates postischemic renal injury via inducible nitric oxide synthase[J]. Molecular & Cellular Biochemistry, 2011, 358(1/2): 287-295.
[23] SEMENZA G L. Oxygen-regulated transcription factors and their role in pulmonary disease[J]. Respiratory Research, 2000, 1(3): 159-162.
[24] SEMENZA G L. Hypoxia-inducible factor 1: Oxygen homeostasis and disease pathophysiology[J]. Trends in Molecular Medicine, 2001, 7(8): 345-350.
[25] 楚秉泉. 西藏芜菁的抗缺氧功能成分分离及其作用机制研究[D]. 杭州: 浙江大学, 2017: 65-67.
[26] 郑晓佳, 余婷, 张华, 等. 表没食子儿茶素没食子酸酯对心肌细胞缺氧/复氧损伤的抑制作用及其机制[J]. 中国药理学通报, 2017, 33(11): 1 584-1 588.
[27] 庞晓斌, 谢欣梅, 赵清辉, 等. 红景天苷对人肝癌 HepG2 细胞增殖及凋亡的影响[J]. 中国药学杂志, 2014, 49(3): 195-198.
[28] LIN Yi-huang, FANG Lian-hua, DU Guan-hua, et al. Progress in regulation of RhoA in myocardial ischemia/reperfusion[J]. Chin Pharmacol Bull, 2015, 31(10): 1 336-1 339.
[29] ANJANA B, BHARAT B. Aggarwal. Receptor-Mediated Choreography of Life and Death[J]. Journal of Clinical Immunology, 2003, 23(5): 317-332.
[30] BARFOLOMEEV E, GONCHAROV T, FEDOROVA A V, et al. c-IAP and c-IAP2 are critical mediators of tumor necrosis factor α(TNF α) induced NF κ B activation[J]. Proc Natl Acad Sci USA, 2008, 105(34): 12 429-12 434.
[31] RAUERT H, WICOVSKY A, MLLER N, et al. Membrane Tumor Necrosis Factor ( TNF) Induces p100 Processing via TNF Receptor-2 ( TNFR2 ) [J]. The Journal of Biological Chemistry, 2010, 285(10): 7 394-7 404.