•  
  •  
 

Abstract

The paper will explain the effects of dietary nutrition and host genetics on energy metabolism, aim to provide reference for the research and development of functional foods for metabolic diseases and the exploration of new therapeutic methods for metabolic diseases.

Publication Date

3-28-2019

First Page

225

Last Page

230

DOI

10.13652/j.issn.1003-5788.2019.03.040

References

[1] 李奇威, 王业胜, 周林, 等. 代谢性疾病与肠道菌群关系的研究进展[J]. 广州中医药大学学报, 2017, 34(4): 623-626.
[2] MAKKI K, DEEHAN E C, WALTER J, et al. The impact of dietary fiber on gut microbiota in host health and disease[J]. Cell Host & Microbe, 2018, 23(6): 705-715.
[3] 邵加庆. 代谢性疾病防控的新大陆——肠道菌群[J]. 医学研究生学报, 2016, 29(1): 16-20.
[4] SIEGFRIED U, SHIHO F, RONALD K C. Interactions be-tween host genetics and gut microbiome in diabetes and metabolic syndrome[J]. Molecular Metabolism, 2016, 5(9): 795-803.
[5] KOH A, DE V F, KOVATCHEVA-DATCHARY P, et al. From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites[J]. Cell, 2016, 165(6): 1 332-1 345.
[6] KELLY C J, ZHENG L, CAMPBELL E L, et al. Crosstalk between microbiota-derived short-chain fatty acids and intestinal epithelial HIF augments tissue barrier function[J]. Cell Host & Microbe, 2015, 17(5): 662-671.
[7] PERRY R J, PENG Liang, BARRY N A, et al. Acetate mediates a microbiome-brain-β cell axis promoting metabolic syndrome[J]. Nature, 2016, 534(7 606): 213-217.
[8] MORRIS G, BERK M, CARVALHO A, et al. The role of the microbial metabolites including tryptophan catabolites and short chain fatty acids in the pathophysiology of immune-inflammatory and neuroimmune disease[J]. Molecular Neurobiology, 2017, 54(6): 1-20.
[9] WAHLSTROM A, SAYIN S, MARSCHALL H U, et al. Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism[J]. Cell Metabolism, 2016, 24(1): 41-50.
[10] GENEVIEVE M, YOUNG-HWAN J, LI Xiao-song, et al. Central action of FGF19 reduces hypothalamic AGRP/NPY neuron activity and improves glucose metabolism[J]. Molecular Metabolism, 2014, 3(1): 19-28.
[11] 吴红, 解玉泉, 张亚臣. 肠道微生物代谢产物氧化三甲胺与心血管疾病研究进展[J]. 临床心血管病杂志, 2016, 32(1): 86-90.
[12] MOROTOMI M, NAGAI F, WATANABE Y. Description of Christensenella minuta gen. nov. sp. nov. isolated from human faeces, which forms a distinct branch in the order Clostridiales, and proposal of Christensenellaceae fam. nov.[J]. International Journal of Systematic & Evolutionary Microbiology, 2012, 62(1): 144-149.
[13] LIM M Y, YOU H J, YOON H S, et al. The effect of heritability and host genetics on the gut microbiota and metabolic syndrome[J]. Gut, 2017, 66(6): 1 031-1 038.
[14] REHMAN A, SINA C, GAVRILOVA O, et al. Nod2 is essential for temporal development of intestinal microbial communities[J]. Gut, 2011, 60(10): 1 354-1 362.
[15] RAUSCH P, REHMEN A, KUNZEL S, et al. Colonic mucosa-associated microbiota is influenced by an interaction of Crohn disease and FUT2 (Secretor) genotype[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(47): 19 030-19 035.
[16] TABESHPOUR J, RAZAVI B M, HOSSEINZADEH H. Effects of avocado (Persea americana) on metabolic syndrome: a comprehensive systematic review[J]. Phytothera-py Research Ptr, 2017, 31(6): 819-837.
[17] O'BRIEN P J, ALBORN W E, SLOAN J H, et al. The novel apolipoprotein A5 is present in human serum, is associated with VLDL, HDL, and chylomicrons, and circulates at very low concentrations compared with other apolipoproteins[J]. Clinical Chemistry, 2005, 51(2): 351-359.
[18] PENNACCHIO L A, OLIVIER M, HUBACEK J A, et al. An apolipoprotein influencing triglycerides in humans and mice revealed by comparative sequencing[J]. Science, 2001, 294(5 540): 169-173.
[19] TUGCE K, DRONG A W, LINDGREN C M. Insights into the genetic susceptibility to type 2 Diabetes from genome-wide association studies of obesity-related traits[J]. Current Diabetes Reports, 2015, 15(10): 83-94.
[20] ROTHSCHILD D, WEISSBROD O, BARKEN E, et al. Environment dominates over host genetics in shaping human gut microbiota[J]. Nature, 2018, 555(7 695): 210-228.
[21] SONNENBURG J L, BACKHED F. Diet-microbiota interactions as moderators of human metabolism[J]. Nature, 2016, 535(7 610): 56-64.
[22] ZHAO Li-ping, ZHANG Feng, DING Xiao-ying, et al. Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes[J]. Science, 2018, 359(6 380): 1 151-1 156.
[23] KOVATCHEVADATCHARY P, NILSSON A, AKRAMI R, et al. Dietary fiber-induced improvement in glucose metabolism is associated with increased abundance of prevotella[J]. Cell Metabolism, 2015, 22(6): 971-982.
[24] DONOVAN S M. Introduction to the special focus issue on the impact of diet on gut microbiota composition and function and future opportunities for nutritional modulation of the gut microbiome to improve human health[J]. Gut Microbes, 2017, 8(2): 75-81.
[25] LEONE V, GIBBONS S M, MARTINEZ K, et al. Effects of diurnal variation of gut microbes and high-fat feeding on host circadian clock function and metabolism[J]. Cell Host & Microbe, 2015, 17(5): 681-689.
[26] KREZNAR J H, KELLER M P, TRAEGER L L, et al. Host genotype and gut microbiome modulate insulin secretion and diet-induced metabolic phenotypes[J]. Cell Reports, 2017, 18(7): 1 739-1 750.
[27] 李琳琳, 杨浩, 王烨. 肠道菌群代谢产物短链脂肪酸与2型糖尿病的关系[J]. 新疆医科大学学报, 2017, 40(12): 1 517-1 521.
[28] HAN Meng, LIU Ping, LI De-fa, et al. Dietary fiber gap and host gut microbiota[J]. Protein & Peptide Letters, 2017, 24(5): 388-396.
[29] 张静, 吕毅. 肠道菌群失调诱发2型糖尿病的研究进展[J]. 中国微生态学杂志, 2016, 28(1): 113-116.
[30] LIU Hu, WANG Ji, HE Ting, et al. Butyrate: a double-edged sword for health?[J]. Advances in Nutrition, 2018, 9(1): 21-29.
[31] CHANG P V, HAO Li-ming, OFFERMANNS S, et al. The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition[J]. Proc Natl Acad Sci U S A, 2014, 111(6): 2 247-2 252.
[32] KIMURA I, INOUE D, MAEDA T, et al. Short-chain fatty acids and ketones directly regulate sympathetic nervous system via G protein-coupled receptor 41 (GPR41)[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(19): 8 030-8 035.
[33] YADAV H, LEE J H, LLOYD J, et al. Beneficial Metabolic Effects of a Probiotic via Butyrate-induced GLP-1 Hormone Secretion[J]. Journal of Biological Chemistry, 2013, 288(35): 25 088-25 097.
[34] KEIM N L, MARTIN R J. Dietary whole grain-microbiota interactions: insights into mechanisms for human health[J]. Advances in Nutrition, 2014, 5(5): 556-557.
[35] LINNEMANN A K, NEUMAN J C, BATTIOLA T J, et al. Glucagon-like peptide-1 regulates cholecystokinin production in β-cells to protect from apoptosis[J]. Molecular Endocrinology, 2015, 29(7): 978-987.
[36] STEINERT R E, FEINLE-BISSET C, ASARIAN L, et al. Ghrelin, CCK, GLP-1, and PYY(3-36): secretory controls and physiological roles in eating and glycemia in health, obesity, and after RYGB[J]. Physiological Reviews, 2017, 97(1): 411-463.
[37] DEN B G, BLEEKER A, GERDING A, et al. Short-chain fatty acids protect against high-fat diet-induced obesity via a PPAR3-dependent switch from lipogenesis to fat oxidation[J]. Diabetes, 2015, 64(7): 2 398-2 408.
[38] ZHANG Yuan-yuan, FANG Fei, GOLDSTEIN J L, et al. Reduced autophagy in livers of fasted, fat-depleted, ghrelin-deficient mice: reversal by growth hormone[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(4): 1 226-1 231.
[39] BIRT D F, BOYLSTON T, HENDRICH S, et al. Resistant starch: promise for improving human health[J]. Advances in Nutrition, 2013, 4(6): 587-601.
[40] MORRISON D J, MACKAY W G, EDWARDS C A, et al. Butyrate production from oligofructose fermentation by the human faecal flora: what is the contribution of extracellular acetate and lactate?[J]. British Journal of Nutrition, 2006, 96(3): 570-577.
[41] GONCALVES D. Microbiota-generated metabolites promo-te metabolic benefits via gut-brain neural circuits[J]. Cell, 2014, 156(1): 84-96.
[42] TURRONI S, BRIGIDI P, CAVALLI A, et al. Microbiota-host Transgenomic Metabolism, Bioactive Molecules from the Inside[J]. Journal of Medicinal Chemistry, 2017, 61(1): 47-61.
[43] CHAMBERS E S, ALEXANDER V, ARIANNA P, et al. Effects of targeted delivery of propionate to the human colon on appetite regulation, body weight maintenance and adiposity in overweight adults[J]. Gut, 2015, 64(11): 1 744-1 754.
[44] DAO M C, EVERARD A, ARONWISNEWSKY J, et al. Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: relationship with gut microbiome richness and ecology[J]. Gut, 2016, 65(3): 426-436.
[45] FREELAND K R, WOLEVER T M. Acute effects of intravenous and rectal acetate on glucagon-like peptide-1, peptide YY, ghrelin, adiponectin and tumour necrosis factor-alpha[J]. British Journal of Nutrition, 2010, 103(3): 460-466.
[46] XU A W. Hypothalamic sensing of bile acids, a gut feeling[J]. Trends in Endocrinology & Metabolism Tem, 2018, 29(6): 363-366.
[47] LI Tian-gang, CHIANG J Y. Bile acids as metabolic regulators[J]. Current Opinion in Gastroenterology, 2015, 31(2): 159-165.
[48] TRAUNER M, CLAUDEL T, FICKERT P, et al. Bile acids as regulators of hepatic lipid and glucose metabolism[J]. Digestive Diseases, 2010, 28(1): 220-224.
[49] LIU Shun-mei, MARCELIN G, BLOUET C, et al. A gut-brain axis regulating glucose metabolism mediated by bile acids and competitive fibroblast growth factor actions at the hypothalamus[J]. Mol Metab, 2017, 8(8): 37-50.
[50] KOETH R A, WANG Z, LEVISON B S, et al. Intestinal microbiota metabolism of l-carnitine, a nutrient in red meat, promotes atherosclerosis[J]. Nature Medicine, 2013, 19(5): 576-585.
[51] ERDMANN C C. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk[J]. New England Journal of Medicine, 2013, 368(17): 1 575-1 584.
[52] WANG Ze-neng, ELIZABETH K, BENNETT B J, et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease[J]. Nature, 2011, 472(7 341): 57-63.
[53] APPLEBY P N, CROWE F L, BRADBURY K E, et al. Mortality in vegetarians and comparable nonvegetarians in the United Kingdom[J]. American Journal of Clinical Nutrition, 2016, 103(1): 218-230.
[54] AADLAND E K, LAVIGEN C, GRAFF I E, et al. Lean-seafood intake reduces cardiovascular lipid risk factors in healthy subjects: results from a randomized controlled trial with a crossover design[J]. American Journal of Clinical Nutrition, 2015, 102(3): 582-592.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.