•  
  •  
 

Abstract

In order to shorten the germination cycle of brown rice and increase the content of γ-aminobutyric acid (GABA), the effects of aeration coercion, metal ion coercion and double stress treatment on brown rice (Zhen waxy rice 19) were studied. The effects of the content, germination rate and bud length showed that the aeration treatment during the whole germination process can significantly accelerate the germination rate of brown rice and increase the content of GABA in brown rice in the late germination stage. However, it would lead to the buds being too long. Aeration treatment for 9 h can effectively control the bud length of 0.2 cm while increasing GABA content. The coercion germination with calcium ion (Ca2+) or aluminum ion (Al3+) can greatly increase the content of GABA in germinated brown rice. When the Ca2+ solution concentration was 35 mmol/L, the GABA growth rate reached 44.3%. The optimum conditions for the germination of double coercion treatment were as follows: brown rice immersed in 35 mmol/L Ca2+ solution for 21 h and then ventilated with 1.5 L/min for 9 h. The germination process lasted for a total of 30 h. Under this condition, the content of γ-aminobutyric acid reached 28.18 mg/100 g which was 64.42% higher than that of normal germination for 36 h and the germination rate increased 2.65%. It can be seen that the double coercion treatment with both aeration and metal ions can significantly increase GABA content and shorten germination cycle.

Publication Date

5-28-2019

First Page

55

Last Page

60,77

DOI

10.13652/j.issn.1003-5788.2019.05.010

References

[1] 丁俊胄, 刘贞, 赵思明, 等. 糙米发芽过程中内源酶活力及主要成分的变化[J]. 食品科学, 2011, 32(11): 29-32.
[2] SINGH A, SHARMA S, SINGH B. Germination behavior, physico-nutritional properties, and diastase activity of brown rice as influence by germination time and temperature[J]. Acta Alimentaria, 2018, 47(1): 70-79.
[3] LI Cui-juan, CAO Xiao-hong, GU Zhen-xin, et al. A preliminary study of the protease activities in germinating brown rice (Oryza sativa L.)[J]. Journal of the Science of Food & Agriculture, 2011, 91(5): 915-920.
[4] 吴凤凤. 发芽对糙米主要营养成分、生理功效和加工特性的影响[D]. 无锡: 江南大学, 2013: 31-40.
[5] MOHD E N, ABDUL KADIR K K, AMOM Z, et al. Antioxidant activity of white rice, brown rice and germinated brown rice (in vivo and in vitro) and the effects on lipid peroxidation and liver enzymes in hyperlipidaemic rabbits[J]. Food Chemistry, 2013, 141(2): 1 306-1 312.
[6] 孙术国, 杨涛, 林亲录, 等. 加工方式对稻米抗氧化性的影响[J]. 食品与机械, 2014, 30(6): 132-134.
[7] WU Feng-feng, YANG Na, TOURé A, et al. Germinated brown rice and its role in human health[J]. Critical Reviews in Food Science & Nutrition, 2013, 53(5): 451-463.
[8] SAIKUSA T, HORINO T, MORI Y. Accumulation of 3-aminobutyric acid (Gaba) in the rice germ during water soaking[J]. Journal of the Agricultural Chemical Society of Japan, 2008, 58(12): 2 291-2 292.
[9] 黄金, 秦礼康, 石庆楠, 等. 藜麦萌芽期营养与功能成分的动态变化[J]. 食品与机械, 2017, 33(5): 54-58.
[10] WEI Yan-yan, SHOHAG M J I, WANG Yu-yan, et al. Effect of zinc sulfate fortification in germinated brown rice on seed zinc concentration, bioavailability, and seed germination[J]. Journal of Agricultural & Food Chemistry, 2012, 60(7): 1 871.
[11] WEI Yan-yan, SHOHAG M J I, FENG Ying, et al. Effect of ferrous sulfate fortification in germinated brown rice on seed iron concentration and bioavailability[J]. Food Chemistry, 2013, 138(2/3): 1 952-1 958.
[12] 丁俊胄, 周强, 杨特武, 等. 低温和低氧储藏对糙米发芽前后γ-氨基丁酸含量的影响[J]. 中国粮油学报, 2015, 30(1): 1-7.
[13] 丁俊胄, 杨特武, 周强, 等. 厌氧胁迫对发芽糙米中γ-氨基丁酸含量变化的影响[J]. 中国粮油学报, 2015, 30(2): 6-10.
[14] KOMATSUZAKI N, TSUKAHARA K, TOYOSHIMA H, et al. Effect of soaking and gaseous treatment on GABA content in germinated brown rice[J]. Journal of Food Engineering, 2007, 78(2): 556-560.
[15] 陈志刚. 钙和赤霉处理对糙米发芽过程中生理生化及主要物质变化的影响[D]. 南京: 南京农业大学, 2003: 30-31.
[16] OH S H. Stimulation of gamma-aminobutyric acid synthe-sis activity in brown rice by a chitosan/glutamic acid germination solution and calcium/calmodulin[J]. Journal of Biochemistry & Molecular Biology, 2003, 36(3): 319.
[17] YOUN Y S, PARK J K, JANG H D, et al. Sequential hydration with anaerobic and heat treatment increases GABA (γ-aminobutyric acid) content in wheat[J]. Food Chemistry, 2011, 129(4): 1 631-1 635.
[18] YIN Yong-qi, YANG Run-qiang, GUO Qiang-hui, et al. NaCl stress and supplemental CaCl2, regulating GABA metabolism pathways in germinating soybean[J]. European Food Research and Technology, 2014, 238(5):781-788.
[19] 蒋振晖. Ca2+和通气处理对糙米发芽过程中主要物质变化的影响及γ-氨基丁酸富集技术研究[D]. 南京: 南京农业大学, 2003: 36-43.
[20] 李晓丹, 王莉, 王韧, 等. 金属盐离子对苦荞萌发及其总黄酮含量的影响[J]. 中国粮油学报, 2012, 27(10): 26-31.
[21] 温坤芳, 林亲录, 吴跃, 等. 浸泡工艺对糙米发芽率的影响[J]. 粮食与饲料工业, 2012, 12(2): 5-9.
[22] 张继红, 康绍英. 高效液相色谱法测定发芽米胚芽中的γ-氨基丁酸[J]. 食品与机械, 2011, 27(4): 82-83.
[23] 李勇, 刘建伟, 袁娇, 等. HPLC柱前衍生法测定发芽糙米中γ-氨基丁酸的含量[J]. 食品与机械, 2014, 30(4): 119-121.
[24] 陆勇伟, 陈生良, 汪毛毛, 等. 单季晚稻种子通气催芽技术研究[J]. 农业与技术, 2018, 38(14): 27.
[25] WATCHARARPARPAIBOON W, LAOHAKUNJIT N, KERDCHOECHUEN O. An improved process for high quality and nutrition of brown rice production[J]. Food Science & Technology International, 2010, 16(2): 147-158.
[26] 王玉萍, 韩永斌, 蒋振辉, 等. 通气处理对发芽糙米生理活性及主要物质含量影响[J]. 扬州大学学报: 农业与生命科学版, 2005, 26(4): 91-94.
[27] 韩永斌, 顾振新, 蒋振辉. Ca2+浸泡处理对发芽糙米生理指标和GABA等物质含量的影响[J]. 食品科学, 2006, 27(10): 58-61.
[28] KHWANCHAI P, CHINPRAHAST N, PICHYANGK-URA R, et al. Gamma-aminobutyric acid and glutamic acid contents, and the GAD activity in germinated brown rice (Oryza sativa L.): Effect of rice cultivars[J]. Food Science & Biotechnology, 2014, 23(2): 373-379.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.