•  
  •  
 

Abstract

Au-Ag nanoparticles (NPs) varying in size (35~91 nm, Au core 19 nm; 66~127 nm, Au core 43 nm) were synthesized via a typical seed growth method and characterized for their morphology and optical properties. The Au-Ag NPs were then applied as surface-enhanced Raman scattering (SERS) substrates for imidan analysis and the influences of particle size and gold-silver ratio for SERS detection were investigated. The results showed that 42 nm Au-Ag NPs with 19 nm Au core and 78 nm Au-Ag NPs with 43 nm Au core had the highest SERS enhancement effect for imidan standard solutions, and could be used to detect the imidan solution at as low as 0.05 mg/L. However, the SERS enhancement effects of Au-Ag NPs for imidan in apple juice were quite different.The minimum detectable concentrations of imidan in apple juice were 5.0 mg/L and 0.5 mg/L, respectively, with the use of 42 nm Au-Ag NPs and 78 nm Au-Ag NPs as SERS substrates. This study indicated that it is possible for rapid SERS detection of imidan in fruit juices by selecting Au-Ag NPs with suitable particle size and the ratio of Au to Ag.

Publication Date

5-28-2019

First Page

72

Last Page

77

DOI

10.13652/j.issn.1003-5788.2019.05.013

References

[1] 宋洋, 姚迪, 李梦朦. 食品中亚胺硫磷残留分析研究[J]. 食品研究与开发, 2014, 35(4): 121-124.
[2] 叶江雷, 弓振斌, 林芳, 等. 茶叶中水胺硫磷、亚胺硫磷、甲基对硫磷和伏杀硫磷农药残留的高效液相色谱法测定[J]. 厦门大学学报: 自然科学版, 2007, 46(3): 441-444.
[3] 韩梅, 易盛国, 杨哓凤, 等. 蔬菜、水果中杀扑磷、伏杀硫磷、亚胺硫磷、蝇毒磷的气相色谱法测定[J]. 现代科学仪器, 2010(5): 99-102.
[4] 李晓晶, 陈安, 黄聪, 等. 分散液液微萃取—气相色谱法快速测定水中23种有机磷农药[J]. 分析测试学报, 2011, 30(3): 326-329.
[5] CUNHA S C, FERNANDES J O, BEATRIZ M, et al. Determination of phosmet and its metabolites in olives by matrix solid-phase dispersion and gas chromatography-mass spectrometry[J]. Talanta, 2007, 73(3): 514-522.
[6] 胡小钟, 储晓刚, 余建新, 等. 气相色谱—质谱法快速筛选测定浓缩苹果汁中105种农药残留量[J]. 分析测试学报, 2003, 22(6): 26-31.
[7] MARTINEZ VIDAL J L, ARREBOLA LIBANAS F J, GONZALEZ RODRIGUEZ M J, et al. Validation of a gas chromatography/triple quadrupole mass spectrometry based method for the quantification of pesticides in food commodities[J]. Rapid Communications in Mass Spectrometry, 2006, 20(3): 365-375.
[8] 杨丽, 生威, 谷传玲, 等. 酶联免疫法检测6种中草药中亚胺硫磷的残留[J]. 食品研究与开发, 2012, 33(3): 113-114.
[9] SONG Yang, GE Yu, ZHANG Yan, et al. Hapten synthesis and enzyme-linked immunosorbent assay for phosmet residues: assay optimization and investigation of matrix effects from different food samples[J]. Analytical and Bioanalytical Chemistry, 2009, 393(8): 2 001-2 008.
[10] LI Xiao-zhou, YU Zhuang, YANG Tian-yue, et al. Detection of organophosphorus pesticide residue on the surface of apples using SERS[J]. Spectroscopy and Spectral Analysis, 2013, 33(10): 2 711-2 714.
[11] XU Meng-lei, GAO Yu, HAN Xiao-xia, et al. Detection of pesticide residues in food using surface-enhanced Raman spectroscopy: a review[J]. Journal of Agricultural & Food Chemistry, 2017, 65(32): 6 719-6 726.
[12] ZHANG Yi-zhi, WANG Zhu-yuan, WU Lei, et al. Rapid simultaneous detection of multi-pesticide residues on apple using SERS technique[J]. The Analyst, 2014, 139(20): 5 148-5 154.
[13] ZHAO Qi, LIU Cui-ling, SUN Xiao-rong, et al. Qualitative and quantitative analyzing on pesticide residue in apple using SERS[J]. Journal of Light Scattering, 2016, 28(1): 6-11.
[14] ZHU Yi-qun, LI Ming-qiang, YU Dao-yang, et al. A novel paper rag as ‘D-SERS’ substrate for detection of pesticide residues at various peels[J]. Talanta, 2014, 128: 117-124.
[15] 欧阳思怡, 叶冰, 刘燕德. 表面增强拉曼光谱法在农药残留检测中的研究进展[J]. 食品与机械, 2013, 29(1): 243-246.
[16] ZHANG Jian-hui, LIU Huai-yong, WANG Zhen-lin, et al. Synthesis of gold regular octahedra with controlled size and plasmon resonance[J]. Applied Physics Letters, 2007, 90(16): 163122.
[17] JIJI S G, GOPCHANDRAN K G. Au-Ag hollow nanostructures with tunable SERS properties[J]. Spectrochimica Acta Part A Molecular and Biomolecular Spectroscopy, 2016, 171(2 017): 499-506.
[18] GRABAR K C, FREEMAN R G, HOMMER M B, et al. Preparation and characterization of Au colloid monolayers[J]. Analytical Chemistry, 1995, 67(4): 735-743.
[19] LARMOUR I A, FAULDS K, GRAHAM D. SERS activity and stability of the most frequently used silver colloids[J]. Journal of Raman Spectroscopy, 2012, 43(2): 202-206.
[20] PEI Lu, OU Yi-ming, YU Wan-song, et al. Au-Ag core-shell nanospheres for surface-enhanced Raman scattering detection of sudan I and sudan II in chili powder[J]. Journal of Nanomaterials, 2015, 16(1): 1-8.
[21] WANG Zhe-zhe, WEN Xin, FENG Zhuo-hong, et al. Highly ordered Au-Ag alloy arrays with tunable morphologies for surface enhanced Raman spectroscopy[J]. Chemical Engineering Journal, 2018, 345(1): 389-394.
[22] 刘江美, 严丽萍, 刘文涵, 等. 表面增强拉曼光谱内标法测定亚胺硫磷农残含量[J]. 分析测试学报, 2016, 35(5): 605-608.
[23] 汪宣, 杜一平, 徐莹, 等. 金纳米颗粒修饰的粉末状多孔材料用于固相萃取及原位超灵敏度表面增强拉曼光谱检测[J]. 光散射学报, 2014, 26(3): 224-228.
[24] FAN Yu-xia, LAI Ke-qiang, RASCO B, et al. Analyses of phosmet residues in apples with surface-enhanced Raman spectroscopy[J]. Food Control, 2014, 37: 153-157.
[25] FRENS G. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions[J]. Nature Physical Science, 1973, 241(105): 20-22.
[26] PEI Lu, HUANG Yi-qun, LI Chun-ying, et al. Detection of triphenylmethane drugs in fish muscle by surface-enhanced Raman spectroscopy coupled with Au-Ag core-shell nanoparticles[J]. Journal of Nanomaterials, 2014, 2 014: 731-747.
[27] OLSON T Y, SCHWARTZBERG A M, ORME C A, et al. Hollow gold-silver double-shell nanospheres: structure, optical absorption, and surface-enhanced Raman scattering[J]. The Journal of Physical Chemistry C, 2008, 112(16): 6 319-6 329.
[28] ALI H R H, EDWARDS H G M, KENDRICK J, et al. Vibrational spectroscopic study of terbutaline hemisulphate[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2009, 72(4): 715-719.
[29] CSILLA M, LEONTIN D, VASILE C, et al. Detection of thiabendazole applied on citrus fruits and bananas using surface enhanced Raman scattering[J]. Food Chemistry, 2014, 145(15): 814-820.
[30] JOO S W, CHUNG T D, JANG W C, et al. Surface-enhanced Raman scattering of 4-cyanobiphenyl on gold and silver nanoparticle surfaces[J]. Langmuir, 2002, 18(23): 8 813-8 816.
[31] FERNANDEZ-GONZALEZ A, MONTEJO-BERNARDO J M, RODRIGUEZ-PRIETO H, et al. Easy-to-use analytical approach based on ATR-FTIR and chemometrics to identify apple varieties under protected designation of origin (PDO)[J]. Computers and Electronics in Agriculture, 2014, 108: 166-172.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.