•  
  •  
 

Abstract

Seven different storage period sausages were selected for nitrite content detection and corresponding spectral data collection,and uses Savitzky-Golary method to preprocess spectral data to reduce the noise of spectral data. Then based on the pre-processed spectral data, 29 characteristic wavelengths were extracted by partial least squares regression coefficient method. Finally, the detection accuracy of the prediction model of nitrite in sausages at characteristic wavelength and full wavelength were analyzed. The results showed that the prediction results of the regression model based on full wavelength were all higher than that based on characteristic wavelength, and the full-wavelength partial least squares regression model was superior to that of the principal component regression model, and the coefficient of determination of the accuracy of the partial least squares regression model was determined. The R2 and root mean square errors were 0.982 9 and 0.059 2, respectively. The dissertation studies show that the spectral information at full wavelength is more suitable for the construction of hyperspectral detection model of nitrite content in sausage storage.

Publication Date

5-28-2019

First Page

78

Last Page

82

DOI

10.13652/j.issn.1003-5788.2019.05.014

References

[1] 谢燕丹, 刘零怡, 楼乔明, 等. 加工蔬菜中亚硝酸盐的消除技术研究进展[J]. 食品与发酵工业, 2016, 42(8): 279-286.
[2] 战旭梅, 刘靖, 刘萍. 高效液相色谱法测定香肠中亚硝酸盐含量[J]. 食品与机械, 2014, 30(6): 72-74.
[3] 白雪娟, 徐世众. 格里斯试剂比色法测定肉制品中亚硝酸盐含量[J]. 肉类工业, 2008(7): 46-48.
[4] HORNYAK I, KOZMA L, LAPAT A, et al. Spectrofluorimetric determination of diethazine and promethazine in pharmaceutical preparations[J]. Biomed.Chromatogr, 1997, 11(2): 99-101.
[5] 杜红霞, 贺稚非, 李洪军. 食品中亚硝酸盐检测技术研究进展[J]. 肉类研究, 2006(1): 12, 46-50.
[6] MERUSI C, CORRADINI C, CAVAZZA A, et al. Determination of nitrates, nituites and oxalates in food products by capillary eletrophoresis with pH-dependent electroosmotic flow reversal[J]. Food Chem., 2010, 120(2): 615-620.
[7] 蔡荟梅, 侯如燕, 高柱, 等. 离子色谱法测定茶叶中的硝酸盐和亚硝酸盐[J]. 茶叶科学, 2012, 32(2): 95-99.
[8] 罗霞, 洪添胜, 罗阔, 等. 高光谱技术在无损检测火龙果可溶性固形物中的应用[J]. 激光与光电子学进展, 2015, 52(8): 315-323.
[9] 詹白勺, 倪君辉, 李军. 高光谱技术结合CARS算法的库尔勒香梨可溶性固形物定量测定[J]. 光谱学与光谱分析, 2014, 34(10): 2 752-2 757.
[10] 吴静珠, 吴胜男, 刘翠玲, 等. 近红外和高光谱技术用于小麦籽粒蛋白含量预测探索[J]. 传感器与微系统, 2013, 32(2): 60-62.
[11] 于慧春, 娄楠, 殷勇, 等. 基于高光谱技术及SPXY和SPA的玉米毒素检测模型建立[J]. 食品科学, 2018, 39(16): 328-335.
[12] 于英杰, 孙威江. 近红外光谱及高光谱技术在茶叶上的应用[J]. 亚热带农业研究, 2014, 10(4): 269-273.
[13] 陈晓东, 郭培源. 基于主成分分析法提取高光谱图像特征检测香肠亚硝酸盐含量[J]. 肉类研究, 2016, 30(12): 22-27.
[14] 刘燕德, 张光伟. 高光谱成像技术在农产品检测中的应用[J]. 食品与机械, 2012, 28(5): 223-226.
[15] 梁逸曾, 俞汝勤. 分析化学手册(10): 化学计量学[M]. 北京: 化工出版社, 2001: 162-165.
[16] 刘树深, 易忠胜. 基础化学计量学[M]. 北京: 科学出版社, 1999: 41-43.
[17] 褚小立, 袁洪福, 陆婉珍. 近红外分析中光谱预处理及波长选择方法进展与应用[J]. 化学进展, 2004(4): 528-542.
[18] 丁希斌, 张初, 刘飞, 等. 高光谱成像技术结合特征提取方法的草莓可溶性固形物检测研究[J]. 光谱学与光谱分析, 2015, 35(4): 1 020-1 024.
[19] 于雷, 章涛, 朱亚星, 等. 基于IRIV算法优选大豆叶片高光谱特征波长变量估测SPAD值[J]. 农业工程学报, 2018, 34(16): 148-154.
[20] 薛建新, 张淑娟, 张晶晶, 等. 壶瓶枣自然损伤的高光谱成像检测[J]. 农业机械学报, 2015, 46(7): 220-226.
[21] 薛建新, 张淑娟, 张晶晶. 基于高光谱成像技术的沙金杏成熟度判别[J]. 农业工程学报, 2015, 31(11): 300-307.
[22] 岳学军, 全东平, 洪添胜, 等. 柑橘叶片叶绿素含量高光谱无损检测模型[J]. 农业工程学报, 2015, 31(1): 294-302.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.