Abstract
In order to achieve rapid identification of Wolfberry from different geographical origin, an electronic tongue identification method based on Hilbert-Huang transform (HHT)-Linear Discriminant Analysis (LDA) was proposed. Taking the four geographical origins (Ningxia, Xinjiang, Gansu and Qinghai) of wolfberry as experimental materials, the voltammetry electronic tongue was used to collect the “fingerprint” information of different geographical origins, and then the Ensemble empirical modal decomposition (EEMD) was used to carry out the original signal of the electronic tongue. The scale decomposition obtained a set of intrinsic mode functions (IMF), and finally its singular spectral entropy and Hilbert marginal spectrum were collected as feature vectors. On this basis, LDA was used to establish a nonlinear combination prediction model for the production area. The experimental results showed that HHT-LDA was better than the algorithm of Feature Point Extraction (FPE), Principal Component Analysis (PCA) and Discrete Wavelet Transform (DWT). The overall classification accuracy and kappa coefficient of Wolfberry from unknown origin reached 98% and 0.973, respectively, indicating that the model had a good identification performance.
Publication Date
5-28-2019
First Page
116
Last Page
122
DOI
10.13652/j.issn.1003-5788.2019.05.021
Recommended Citation
Tingjia, YIN; Zhengwei, YANG; Tingting, GUO; Zhiqiang, WANG; Xia, SUN; Caihong, LI; and Wenhao, YUAN
(2019)
"Rapid identification method of wolfberry geographical origin based on voltammetry electronic tongue,"
Food and Machinery: Vol. 35:
Iss.
5, Article 21.
DOI: 10.13652/j.issn.1003-5788.2019.05.021
Available at:
https://www.ifoodmm.cn/journal/vol35/iss5/21
References
[1] 闫秀梅, 董静洲, 王瑛. 枸杞和宁夏枸杞叶片主要活性成分含量比较研究[J]. 食品科学, 2010, 31(1): 29-32.
[2] 田晓静, 马忠仁, 王彩霞.枸杞子掺伪检测方法的研究进展[J]. 食品安全质量检测学报, 2015, 6(10): 3 911-3 916.
[3] 林楠, 杨宗学, 蔺海明, 等. 不同产地枸杞质量的比较研究[J]. 甘肃农大学报, 2013, 48(2): 34-39.
[4] 张波, 秦垦, 戴国礼, 等. 不同产区宁夏枸杞果实的主成分分析与综合评价[J]. 西北农业学报, 2014, 23(8): 155-159.
[5] 汤丽华, 刘敦华. 基于近红外光谱技术的枸杞产地溯源研究[J]. 食品科学, 2011, 32(22): 175-178.
[6] WU Hao, YUE Tian-li, YUAN Ya-hong. Authenticity tracing of apples according to variety and geographical origin based on electronic nose and electronic tongue[J]. Food Analytical Methods, 2018, 11(2): 522-532.
[7] SOBRINO-GREGORIO L, BATALLER R, SOTO J, et al. Monitoring honey adulteration with sugar syrups using an automatic pulse voltammetric electronic tongue[J]. Food Control, 2018, 91: 254-260.
[8] WEI Zhen-bo, ZHANG Wei-lin, WANG Yong-wei, et al. Monitoring the fermentation, post-ripeness and storage processes of set yogurt using voltammetric electronic tongue[J]. Journal of Food Engineering, 2017, 203: 41-52.
[9] 韩剑众, 黄丽娟, 顾振宇, 等. 基于电子舌的鱼肉品质及新鲜度评价[J]. 农业工程学报, 2008, 24(12): 141-144.
[10] 刘晶晶, 高红慧, 李婧祎, 等. 基于方波伏安型电子舌的鸡蛋蛋清检测方法研究[J]. 传感器与微系统, 2014, 33(11): 56-58.
[11] 任奇锋, 王俊. 自动进样与恒温控制型电子舌检测系统[J]. 农业机械学报, 2016, 47(4): 186-192.
[12] 陈茂晴. 基于电子鼻和电子舌技术的金耳深层发酵过程监测方法研究[D]. 镇江: 江苏大学, 2016: 37-51.
[13] 胡玖. 基于改进PCA和SVM的Android平台人脸识别系统开发[D]. 成都: 电子科技大学, 2018: 4-6.
[14] LU Lin, HU Xian-qiao, TIAN Shi-yi, et al. Visualized attribute analysis approach for characterization and quantification of rice taste flavor using electronic tongue[J]. Anal. Chim. Acta, 2016, 919(5): 11-19.
[15] 史庆瑞, 国婷婷, 殷廷家, 等. 基于电子舌检测的橙汁贮藏品质研究[J]. 食品与机械, 2017, 33(11): 137-142.
[16] 马泽亮, 殷廷家, 国婷婷, 等. 采用电子舌法检测橙汁及白酒的品牌及纯度[J]. 食品工业科技, 2018, 39(8): 190-194.
[17] HUANG N E, SHEN Zheng, LONG S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society of London: Series A: Mathematical, Physical and Engineering Sciences, 1998, 454(1 971): 903-995.
[18] 孙会文, 伏云发, 熊馨, 等. 基于HHT运动想象脑电模式识别研究[J]. 自动化学报, 2015, 41(9): 1 686-1 692.
[19] 曾一鑫, 白春华, 王仲琦. 基于HHT研究房屋结构对爆炸地震的振动响应[J]. 振动与冲击, 2014, 33(15): 71-75.
[20] 李佳睿, 岳建海. 基于HHT及共振解调方法的动车组走行部轴箱轴承故障诊断算法[J]. 北京交通大学学报, 2017, 41(4): 85-90.
[21] YIN Ting-jia, GUO Ting-ting, MA Ze-liang, et al. Classification of wolfberry with different geographical origins by using voltammetric electronic tongue[J]. IFAC-Papers On Line, 2018, 51(17): 654-659.
[22] WU Zhao-hua, HUANG N E. Ensemble empirical mode decomposition: A noise assisted data analysis method[J]. Advances in Adaptive Data Analysis, 2009, 1(1): 1-41.
[23] 张琳, 马宏忠, 姜宁, 等. 基于奇异谱熵和支持向量机的变压器绕组松动识别及定位[J]. 电力系统保护与控制, 2017, 45(18): 69-75.
[24] 李辉, 焦毛, 杨晓萍, 等. 基于EEMD和SOM神经网络的水电机组故障诊断[J]. 水力发电学报, 2017, 36(7): 83-91.
[25] 宋祎. 基于CEEMD和特征融合的高速列车振动信号特征分析[D]. 成都: 西南交通大学, 2016: 27-29.
[26] AMPUERO S, BOSSETJ O. The electronic nose applied to dairy products: A review[J]. Sensors & Actuators B: Chemical, 2003, 94(1): 1-12.