Abstract
The O-2,4-dichlorophenoxyacetic-oligochitosan (Dcpo-O-COS) was synthesized by chitosan oligosaccharide (COS) and 2,4-dichlorophenoxyacetic acid. The steps were as followed: amino protecting of chitosan oligosaccharide, carboxyl acyl chlorination of 2,4-dichlorophenoxyacetic acid, hydroxyl of COS reacted with acyl chlorination 2,4-dichlorophenoxyacetic acid, amino deprotection. Fourier transform infrared (FTIR), UV-Vis absorption and 1H nuclear magnetic resonance (NMR) were used to characterize the structure of the final product. The results exhibited that Dcpo-O-COS was successfully synthesized. Moreover, both stability, tested by X-ray diffraction (XRD) and Thermogravimetric Analysis (TGA), and antibacterial activity, toresistance to Escherichia coli and Staphylococcus aureus, of Dcpo-O-COS were higher than COS.
Publication Date
6-28-2019
First Page
74
Last Page
78,99
DOI
10.13652/j.issn.1003-5788.2019.06.013
Recommended Citation
Xiaoxian, YUAN; Lin, YUE; Qixing, JIANG; Xiaoli, LIU; Wanwen, CHEN; Wenshui, XIA; and Yuan, PING
(2019)
"Preparation, characterization and antibacterial activity of O-2,4-dichlorophenoxyacetic-oligochitosan,"
Food and Machinery: Vol. 35:
Iss.
6, Article 13.
DOI: 10.13652/j.issn.1003-5788.2019.06.013
Available at:
https://www.ifoodmm.cn/journal/vol35/iss6/13
References
[1] ZOU Pan, YANG Xin, WANG Jing, et al. Advances in characterisation and biological activities of chitosan and chitosan oligosaccharides[J]. Food Chemistry, 2016, 190: 1 174-1 181.
[2] KONG M, CHEN X G, XING K, et al. Antimicrobial properties of chitosan and mode of action: A state of the art review[J]. International Journal of Food Microbiology, 2010, 144(1): 51-63.
[3] BADAWY M E I, RABEA E I, TAKTAK N E M, et al. The antibacterial activity of chitosan products blended with monoterpenes and their biofilms against plant pathogenic pacteria[J]. Scientifica, 2016, 2 016: 1-10.
[4] FENG Yong-wei, XIA Wen-shui. Preparation, characterization and antibacterial activity of water-soluble-fumaryl-chitosan[J]. Carbohydrate Polymers, 2011, 83(3): 1 169-1 173.
[5] VERLEE A, MINCKE S, STEVENS C V. Recent developments in antibacterial and antifungal chitosan and its derivatives[J]. Carbohydr Polym, 2017, 164: 268-283.
[6] YUE Lin, LI Jing-ru, CHEN Wan-wen, et al. Geraniol grafted chitosan oligosaccharide as a potential antibacterial agent[J]. Carbohydrate Polymers, 2017, 176: 356-364.
[7] LIU Xiao-li, JIANG Qi-xing, XIA Wen-shui. One-step procedure for enhancing the antibacterial and antioxidant properties of a polysaccharide polymer: Kojic acid grafted onto chitosan[J]. International Journal of Biological Macromole-cules, 2018, 113: 1 125-1 133.
[8] LIU Xiao-li, XIA Wen-shui, JIANG Qi-xing, et al. Synthesis, characterization, and antimicrobial activity of kojic acid grafted chitosan oligosaccharide[J]. Journal of Agricultural & Food Chemistry, 2014, 62(1): 297-303.
[9] KHAN I, ULLAH S, OH D H. Chitosan grafted monomethyl fumaric acid as a potential food preservative[J]. Carbohydrate Polymers, 2016, 152: 87-96.
[10] WANG Zhao-dong, ZHENG Liu-chun, LI Chun-cheng, et al. Modification of chitosan with monomethyl fumaric acid in an ionic liquid solution[J]. Carbohydrate Polymers, 2015, 117: 973-979.
[11] LIU Jun, WEN Xiao-yuan, LU Jian-feng, et al. Free radical mediated grafting of chitosan with caffeic and ferulic acids: structures and antioxidant activity[J]. International Journal of Biological Macromolecules, 2014, 65(5): 97-106.
[12] XIE Min-hao, HU Bing, WANG Yan, et al. Grafting of gallic acid onto chitosan enhances antioxidant activities and alters rheological properties of the copolymer[J]. Journal of Agricultural & Food Chemistry, 2014, 62(37): 9 128-9 136.
[13] RUIZ-CARO R, VEIGA M D, MEO C D, et al. Mechanical and drug delivery properties of a chitosan-tartaric acid hydrogel suitable for biomedical applications[J]. Journal of Applied Polymer Science, 2011, 123(2): 842-849.
[14] REN Jian-ming, LI Qing, DONG Fang, et al. Phenolic antioxidants-functionalized quaternized chitosan: Synthesis and antioxidant properties[J]. International Journal of Biological Macromolecules, 2013, 53(2): 77-81.
[15] 冯永巍, 夏文水, 申丽丽, 等. O-苯甲酰壳聚糖的合成及其抑真菌活性[J]. 食品与生物技术学报, 2011, 30(3): 367-370.
[16] 王爱勤, 俞贤达. 烷基化壳聚糖衍生物的制备与性能研究[J]. 功能高分子学报, 1998(1): 83-86.
[17] 李莹, 周晓晶, 王尉, 等. 防腐剂2, 4-二氯苯氧乙酸标准物质研制[J]. 分析试验室, 2015, 34(11): 1 306-1 310.
[18] 刘蕊, 李德红, 李玲. 2, 4-二氯苯氧乙酸的研究进展[J]. 生命科学研究, 2004(S2): 71-75.
[19] 黄丽. 2, 4-D-明胶/壳聚糖/葡甘聚糖复合微球的制备及其性能[J]. 皮革科学与工程, 2008, 18(6): 27-31.
[20] KURITA K, AKAO H, YANG J, et al. Nonnatural branched polysaccharides: Synthesis and properties of chitin and chitosan having α-mannoside branches[J]. Macromolecules, 1998, 31(15): 4 764-4 769.
[21] 冯永巍. 壳聚糖的化学改性及其衍生物的抑菌活性研究[D]. 无锡: 江南大学, 2011: 24.
[22] LI Cong-xin, GUO Tian-ying, ZHOU De-zhong, et al. A novel glutathione modified chitosan conjugate for efficient gene delivery[J]. Journal of Controlled Release, 2011, 154(2): 177-188.
[23] VERHEUL R J, AMIDI M, VAN D W S, et al. Synthesis, characterization and in vitro biological properties of-methyl free, -trimethylated chitosan[J]. Biomaterials, 2008, 29(27): 3 642-3 649.
[24] 董炎明, 毕丹霞, 赵雅青, 等. 十一种壳聚糖衍生物的紫外吸收特性[J]. 应用化学, 2005, 22(10): 1 050-1 054.
[25] 刘晓丽. 壳寡糖—曲酸衍生物的制备及其抗菌活性研究[D]. 无锡: 江南大学, 2015: 18-23.
[26] BOZIC M, GORGIEVA S, KOKOL V. Laccase-mediated functionalization of chitosan by caffeic and gallic acids for modulating antioxidant and antimicrobial properties[J]. Carbohydrate Polymers, 2012, 87(4): 2 388-2 398.
[27] NIU Xu-feng, LIU Zhong-ning, HU Jiang, et al. Microspheres Assembled from Chitosan-Graft-Poly(lactic acid) Micelle-Like Core-Shell Nanospheres for Distinctly Controlled Release of Hydrophobic and Hydrophilic Biomolecules[J]. Macromolecular Bioscience, 2016, 16(7): 1 039-1 047.
[28] WORANUCH S, YOKSAN R, AKASHI M. Ferulic acid-coupled chitosan: Thermal stability and utilization as an antioxidant for biodegradable active packaging film[J]. Carbohydrate Polymers, 2015, 115: 744-751.