Abstract
Considering the influence of ethanol concentration, extraction time, extraction temperature and liquid-to-material ratio on the extraction rate, the experiments were proposed for procyanidins extraction, which was from small black bean coats in Northern Shaanxi, by single factor method and response surface methodology. The experiments were designed by the Box-Behnken of response surface software. The mathematical model of the extraction process and the regression equation of the model were established through experimental data. The optimum conditions of the extraction process were calculated by the mathematical model, and the antioxidant anctivity of procyanidins was also studied . The results showed that the optimum extraction conditions of the procyanidins from small black bean coats were as follows: extraction time 4.2 h, extraction temperature 53 ℃, the liquid to material ratio 22∶1 (mL/g) and ethanol concentration 60%. Under the optimized condition, the average extraction rate was 5.38%. The antioxidant activity study showed that abilities of procyanidins in black bean coasts to scavenge DPPH and hydroxyl radical and superoxide anion were good, and the IC50 were 0.075, 0.590, 0.220 mg/mL respectively.
Publication Date
6-28-2019
First Page
159
Last Page
164
DOI
10.13652/j.issn.1003-5788.2019.06.029
Recommended Citation
Jingjing, GAO; Miao, MU; Junzhi, YAN; and Lina, LIU
(2019)
"Study on the extraction processing and antioxidant anctivity of procyanidins from small black bean coats in Northern Shaanxi,"
Food and Machinery: Vol. 35:
Iss.
6, Article 29.
DOI: 10.13652/j.issn.1003-5788.2019.06.029
Available at:
https://www.ifoodmm.cn/journal/vol35/iss6/29
References
[1] 余修亮, 朱志平, 李佳桥, 等. 莲子壳原花青素超声提取工艺优化及其抗氧化活性[J]. 中国食品学报, 2018, 18(12): 99-109.
[2] 刘新, 余小平, 游江舟, 等. 荔枝皮中原花青素提取工艺优化及其黄烷-3-醇HPLC分析[J]. 食品与机械, 2012, 28(6): 154-158.
[3] 韦琴. 板栗壳中原花青素含量检测方法的比较研究[J]. 食品与机械, 2016, 32(3): 77-81.
[4] 丁晓旭, 尹洋, 崔相国, 等. 原花青素对喉癌TU686细胞增殖、凋亡的影响[J]. 解剖科学进展, 2018, 24(6): 584-587.
[5] ZHOU Qian, HAN Xue, LI Rong-bin, et al. Anti-atherosclerosis of oligomeric proanthocyanidins from Rhodiola rosea on rat model via hypolipemic, antioxidant, anti-inflammatory activities together with regulation of endothelial function[J]. Phytomedicine, 2018, 51(11): 171-180.
[6] 李海超, 吕鹏, 陈飞儿, 等. 原青花素的抗肿瘤机制研究现状[J]. 吉林医药学院学报, 2017, 38(1): 64-66.
[7] 秦琦, 张英蕾, 张守文. 黑豆的营养保健价值及研究进展[J]. 中国食品添加剂, 2015, 25(7): 145-150.
[8] 王巧环, 江均平, 傅慧敏, 等. 绿豆、红小豆和黑豆种皮18种元素分析[J]. 食品科学, 2015, 36(20): 126-129.
[9] 沈蒙, 康子悦, 葛云飞, 等. 酶法改性提取黑豆皮可溶性膳食纤维及性质的研究[J]. 天然产物研究与开发, 2018, 30(6): 1 046-1 053, 1 084.
[10] 蒋新龙, 蒋益花. 黑豆皮花色苷酯化修饰及其降解与抗氧化特性[J]. 中国粮油学报, 2018, 33(9): 34-41.
[11] 张翠, 张丽娟, 刘占云, 等. 比色法测定不同产地黑豆皮中总黄酮的含量[J]. 食品工业科技, 2013, 34(1): 309-311, 316.
[12] 沈蒙, 曹龙奎. 提取黑豆皮中可溶性膳食纤维的工艺研究[J]. 中国食品添加剂, 2017, 27(9): 82-87.
[13] 朱学伸, 赵文, 林淑鑫, 等. 黑豆种皮中原花青素的提取和纯化研究[J]. 现代食品科技, 2018, 34(1): 154-160.
[14] 李勇, 李代魁, 李忠平, 等. 黑豆皮中原花青素含量测定及抗氧化活性研究[J]. 农产品加工, 2019(3): 60-63.
[15] 张喜峰, 程广, 何倩, 等. 双水相萃取分离葡萄籽中原花青素[J]. 食品与机械, 2017, 33(3): 168-173.
[16] 张喜峰, 陈雨迪, 崔晶, 等. 锁阳原花青素提取方法及抗氧化和抗糖基化研究[J]. 天然产物研究与开发, 2018, 30(12): 2 039-2 048.
[17] 李春阳, 许时婴, 王璋. 香草醛—盐酸法测定葡萄籽、梗中原花青素含量的研究[J]. 食品科学, 2004, 25(2): 157-161.
[18] 文魁山. 葡萄籽原花青素高聚体的解聚方法与条件优化的研究[D]. 杭州: 浙江大学, 2018: 19-23.
[19] 高晶晶, 慕苗. 陕北小粒黑豆中黄酮的提取工艺研究[J]. 河南科学, 2018, 36(9): 1 367-1 371.
[20] ZHENG Lin, LIN Lian-zhu, SU Guo-wan, et al. Pitfalls of using 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay to assess the radical scavenging activity of peptides: Its susceptibility to interference and low reactivity towards peptides[J]. Food Research International, 2015, 76(6): 359-365.
[21] 付晶晶, 肖海芳, 宋元达. 金银花等6种植物提取物总黄酮含量与抗氧化性相关性研究[J]. 食品与机械, 2017, 33(6): 159-163.
[22] 符群, 吴桐, 王梦丽. 负压超声法提取刺玫果黄酮及其抗氧化性研究[J]. 现代食品科技, 2019, 35(1): 1-10.