Abstract
With the polysaccharide content, whiteness and rehydration rate as evaluation indexes, the microwave vacuum drying process of yam was optimized by single factor and quadratic rotation orthogonal experiment, and the functional active components and antioxidant capacity of dried yam were evaluated. The results showed that the regression model established by quadratic rotation orthogonal experiment could reflect the relationship between factors and indexes appropriately. The optimum production conditions were found to be the 3 mm-thick slices were vacuumed with -0.08 MPa at 55 ℃. Under the control of these conditions, the polysaccharide content, whiteness and rehydration rate of dried yam were (4.12±0.08)%, (78.04±0.82) and (223.29±1.31)%, respectively. The IC50 of dried yam scavenging DPPH radical, hydroxyl radical and superoxide anion radical were (18.61±0.11), (19.86±0.15) and (21.06±0.14) mg/mL, respectively. The contents of polyphenols, flavones and allantoin were (0.71±0.05), (1.32±0.04) and (6.86±0.08) mg/g, respectively. Microwave vacuum drying yam had strong antioxidant capacity and good product quality. Microwave vacuum drying technology could reduce the loss of active components and had a good application prospect in the drying of agricultural products.
Publication Date
6-28-2019
First Page
188
Last Page
194
DOI
10.13652/j.issn.1003-5788.2019.06.034
Recommended Citation
Lei, XIA; Zhao, HUANG; Huafeng, OUYANG; Shiyin, GUO; Xiaojun, SU; Feng, WANG; and Qingming, LI
(2019)
"Optimization of microwave vacuum drying technology of yam and the evaluation of its functional activity,"
Food and Machinery: Vol. 35:
Iss.
6, Article 34.
DOI: 10.13652/j.issn.1003-5788.2019.06.034
Available at:
https://www.ifoodmm.cn/journal/vol35/iss6/34
References
[1] 马丽苹, 焦昆鹏, 罗磊, 等. 怀山药抗性淀粉理化性质及体外消化性研究[J]. 食品与机械, 2017, 33(11): 41-46.
[2] 张黎骅, 武莉峰, 党鑫凯, 等. 鲜切高山野山药片微波间歇干燥特性研究[J]. 食品与机械, 2017, 33(1): 39-44, 92.
[3] 李辉, 林河通, 袁芳, 等. 荔枝果肉微波真空干燥特性与动力学模型[J]. 农业机械学报, 2012, 43(6): 107-112.
[4] 丁睿. 马铃薯微波真空干燥动力学及设备能耗的实验研究[D]. 哈尔滨: 哈尔滨商业大学, 2017: 25-34.
[5] 张乐, 赵守涣, 王赵改, 等. 板栗微波真空干燥特性及干燥工艺研究[J]. 食品与机械, 2018, 34(4): 206-210.
[6] 化春光. 微波真空干燥对怀山药片品质的影响[D]. 洛阳: 河南科技大学, 2011.
[7] 张丽晶, 林向阳, ROGER Ruan, 等. 绿茶微波真空干燥工艺的优化[J]. 食品与机械, 2010, 26(2): 143-147.
[8] 曾维才, 石碧. 天然产物抗氧化活性的常见评价方法[J]. 化工进展, 2013, 32(6): 1 205-1 213, 1 247.
[9] 蒋方程, 李傲然, 何静仁, 等. 不同品种山药的营养成分分析及其水提物的体外抗氧化能力研究[J]. 食品工业科技, 2018, 39(4): 6-11.
[10] 张黎明, 李瑞超, 郝利民, 等. 响应面优化玛咖叶总黄酮提取工艺及其抗氧化活性研究[J]. 现代食品科技, 2014, 30(4): 233-239.
[11] 李宁宁, 马占玲, 陈思, 等. 山药中多酚的提取及其对亚硝酸盐的清除作用[J]. 食品安全质量检测学报, 2017, 8(2): 475-480.
[12] 赵立庭, 赵华, 刘阳, 等. 铁棍山药皮中黄酮化合物提取工艺条件优化[J]. 粮油食品科技, 2016, 24(4): 59-63.
[13] 李鑫, 李坚, 苏小军, 等. 高效液相色谱法同时测定淮山中6种活性成分[J]. 食品工业, 2018, 39(10): 296-299.
[14] 付小雨. 不同产地山药营养品质和药理活性成分的比较[D]. 武汉: 武汉工业学院, 2012: 23-28.
[15] 田玉婷, 陈洁, 庄培荣, 等. 响应面法优化龙眼肉微波真空干燥工艺[J]. 热带作物报, 2011, 32(12): 2 352-2 357.
[16] 张雪, 马永生, 陈复生, 等. 真空微波干燥对小米、山药营养与品质特性的影响[J]. 粮食与油脂, 2018, 31(4): 34-38.
[17] 陈丰. 莲子微波真空干燥工艺的研究[D]. 福州: 福建农林大学, 2010: 18-20.
[18] 徐晚秀, 李臻锋, 李静, 等. 微波干燥温度和物料厚度对铁棍山药片品质的影响[J]. 食品与机械, 2016, 32(11): 191-193, 236.
[19] 周琦, 彭林, 陈厚荣. 响应面法优化柠檬片微波真空干燥工艺[J]. 食品与发酵工业, 2018, 44(4): 186-193.
[20] 苏小军, 罗振海, 李雁含, 等. 紫淮山全粉喷雾冷冻干燥工艺及其特性研究[J]. 激光生物学报, 2018(4): 373-380, 372.
[21] HSU Chin-lin, CHEN Wenlung, WENG Yih-ming, et al. Chemical composition, physical properties, and antioxidant activities of yam flours as affected by different drying methods[J]. Food Chemistry, 2003, 83(1): 85-92.
[22] JIANG Ning, LIU Chun-quan, LI Da-jing, et al. Effect of thermosonic pretreatment on drying kinetics and energy consumption of microwave vacuum dried Agaricus bisporus, slices[J]. Journal of Food Engineering, 2016, 177: 21-30.
[23] 衡银雪, 郑旭煦, 殷钟意, 等. 不同干燥方法对黄精干燥特性和品质的影响[J]. 食品工业科技, 2018, 39(7): 158-161, 167.