Abstract
Bearing is a vulnerable component in food processing machinery and packaging machinery. Bearing status is related to the safe operation of machinery. In this study, bearing fault diagnosis method based on EMD and AR models was adopted to solve the problem of bearing fault diagnosis, ensuring the maximum quality and efficiency of food production. A bearing fault dynamics model integrating outer ring, inner ring, and rolling were built to obtain the bearing vibration signal during the operation of the bearing. Therefore, the bearing fault diagnosis method based on EMD and AR model was adapted to decompose the bearing vibration signal into IMF components. After constructing AR model, it was used to construct the bearing comprehensive determination distance between the autoregressive parameters and the variance of the residuals, and the fault diagnosis of the bearing was completed according to the state corresponding to the minimum comprehensive discrimination distance. The analysis and research showed that the outer ring fault and the inner ring fault were diagnosed with the normal bearing. Moreover, the error of the diagnosis result was small with low complexity, and this helped to achieve the goal of high efficiency diagnosis of bearing fault.
Publication Date
7-28-2019
First Page
117
Last Page
120,146
DOI
10.13652/j.issn.1003-5788.2019.07.021
Recommended Citation
Changpei, SHANG and Songhong, ZHANG
(2019)
"Research on bearing fault diagnosis method based on EMD and AR model,"
Food and Machinery: Vol. 35:
Iss.
7, Article 21.
DOI: 10.13652/j.issn.1003-5788.2019.07.021
Available at:
https://www.ifoodmm.cn/journal/vol35/iss7/21
References
[1] 陈玉娟, 李焕娜. 基于VMD和Teager能量增强谱的滚动轴承故障诊断方法[J]. 机床与液压, 2016, 44(15): 178-183.
[2] 陈俊洵, 程龙生, 胡绍林, 等. 基于EMD的改进马田系统的滚动轴承故障诊断[J]. 振动与冲击, 2017, 36(5): 151-156.
[3] 孙炎平, 陈捷, 洪荣晶, 等. 基于EMD-HMM的转盘轴承故障诊断方法[J]. 轴承, 2017, 15(1): 41-45.
[4] 郑小霞, 贾文慧, 王靖, 等. 基于多结构元素形态滤波和EMD的轴承故障诊断[J]. 组合机床与自动化加工技术, 2018(5): 125-128.
[5] 卢锦玲, 绳菲菲, 赵洪山. 基于极限学习机的风电机组主轴承故障诊断方法[J]. 可再生能源, 2016, 34(11): 1 588-1 594.
[6] 金小强, 李新民, 陈焕, 等. 基于神经网络的直升机自动倾斜器轴承故障诊断方法[J]. 南京航空航天大学学报, 2016, 48(2): 230-237.
[7] LEE H L, VASOYA J M, CIRQUEIRA M L, et al. Continuous preparation of 1∶1 Haloperidol-maleic acid salt by a novel solvent-free method using a twin screw melt extruder[J]. Mol Pharm, 2017, 14(4): 1 278-1 291.
[8] 佘博, 田福庆, 汤健, 等. 基于Teager能量算子和EEMD的滚动轴承故障诊断方法[J]. 北京工业大学学报, 2017, 43(6): 859-864.
[9] 王靖飞, 翟永杰. 风力发电机组滚动轴承故障诊断仿真研究[J]. 计算机仿真, 2016, 33(12): 105-108.
[10] 刘国庆, 史小春, 廖强. 基于神经网络分类算法的电机轴承故障检测方法[J]. 微特电机, 2017, 45(1): 30-33.
[11] 郑近德, 潘海洋, 程军圣, 等. 基于复合多尺度模糊熵的滚动轴承故障诊断方法[J]. 振动与冲击, 2016, 35(8): 116-123.
[12] SHIRAZIAN S, KUSHS M, DARWISH S, et al. Artificial neural network modelling of continuous wet granulation using a twin-screw extruder[J]. Int J Pharm, 2017, 521(1/2): 102-109.
[13] 靳行, 林建辉, 伍川辉, 等. 基于EEMD-TEO熵的高速列车轴承故障诊断方法[J]. 西南交通大学学报, 2018, 53(2): 359-366.
[14] 陈玄, 陈跃鹏, 龙作琎, 等. 基于SVM-HMM轴承故障诊断方法[J]. 武汉理工大学学报: 信息与管理工程版, 2016, 38(2): 267-270.
[15] 王恒迪, 赵彪, 杨建玺, 等. 滚动轴承故障诊断系统的设计及应用[J]. 机床与液压, 2018, 46(7): 163-166.