•  
  •  
 

Abstract

Based on LingWu jujube as experimental object, used the Halcon12.0 visual processing software by the method of support vector machine (SVM) in IHS color space to extract the mean value and mean variance of H component as the color eigenvalues. Selected the gaussian kernel function by the experiments. When the kernel parameter was 0.2, and the regular constant was 0.005, the accuracy rate was 94.6%, which greatly improved the efficiency of nondestructive on-line detection, decreased the labor cost and labor intensity, and eliminated the scruple on the accuracy of on-line detection for jujube to processors. It has large research significance in fruit grading.

Publication Date

7-28-2019

First Page

168

Last Page

171

DOI

10.13652/j.issn.1003-5788.2019.07.032

References

[1] 亓树艳, 王荔, 莫晓燕. 大枣多糖的提取工艺及抗氧化作用研究[J]. 食品与机械, 2012, 28(4): 117-120.
[2] 沈从举, 郑炫, 贾首星, 等. 6FGH-800型滚杠式大枣分级机研制[J]. 新疆农业科学, 2015(3): 535-541, 550.
[3] 刘志国, 卢艳清, 赵锦, 等. 枣果吸水动力学和果皮特征对裂果的影响[J]. 植物遗传资源学报, 2015(1): 192-198.
[4] 毛永民, 宋仁平, 申连英, 等. GB/T 22345—2008鲜枣质量等级[S]. 北京: 中国标准出版社, 2006: 1-6.
[5] 周禹含, 毕金峰, 陈芹芹, 等. 中国大枣加工及产业发展现状[J]. 食品与机械, 2013, 29(4): 214-217.
[6] 李啸宇, 张秋菊. 颗粒状食品视觉检测分选技术的发展[J]. 食品工业科技, 2014(13): 378-381, 386.
[7] 张萌, 许敏. 大枣表面缺陷快速检测方法研究[J]. 江苏农业科学, 2015(7): 331-334.
[8] 郭明玮, 赵宇宙, 项俊平, 等. 基于支持向量机的目标检测算法综述[J]. 控制与决策, 2014(2): 193-200.
[9] 李俊伟. 基于机器视觉技术的新疆鲜葡萄及葡萄干品质分析研究[D]. 乌鲁木齐: 新疆农业大学, 2014: 28-31.
[10] 常甜甜. 支持向量机学习算法若干问题的研究[D]. 西安: 西安电子科技大学, 2010: 18-19.
[11] 赵杰文, 刘少鹏, 邹小波. 基于支持向量机的缺陷红枣机器视觉识别[J]. 农业机械学报, 2008, 39(3): 113-115, 147.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.