Abstract
Based on LingWu jujube as experimental object, used the Halcon12.0 visual processing software by the method of support vector machine (SVM) in IHS color space to extract the mean value and mean variance of H component as the color eigenvalues. Selected the gaussian kernel function by the experiments. When the kernel parameter was 0.2, and the regular constant was 0.005, the accuracy rate was 94.6%, which greatly improved the efficiency of nondestructive on-line detection, decreased the labor cost and labor intensity, and eliminated the scruple on the accuracy of on-line detection for jujube to processors. It has large research significance in fruit grading.
Publication Date
7-28-2019
First Page
168
Last Page
171
DOI
10.13652/j.issn.1003-5788.2019.07.032
Recommended Citation
Chunpu, WANG; Huaixing, WEN; and Junjie, WANG
(2019)
"Detection of the Chinese Jujube surface defects by machine vision,"
Food and Machinery: Vol. 35:
Iss.
7, Article 32.
DOI: 10.13652/j.issn.1003-5788.2019.07.032
Available at:
https://www.ifoodmm.cn/journal/vol35/iss7/32
References
[1] 亓树艳, 王荔, 莫晓燕. 大枣多糖的提取工艺及抗氧化作用研究[J]. 食品与机械, 2012, 28(4): 117-120.
[2] 沈从举, 郑炫, 贾首星, 等. 6FGH-800型滚杠式大枣分级机研制[J]. 新疆农业科学, 2015(3): 535-541, 550.
[3] 刘志国, 卢艳清, 赵锦, 等. 枣果吸水动力学和果皮特征对裂果的影响[J]. 植物遗传资源学报, 2015(1): 192-198.
[4] 毛永民, 宋仁平, 申连英, 等. GB/T 22345—2008鲜枣质量等级[S]. 北京: 中国标准出版社, 2006: 1-6.
[5] 周禹含, 毕金峰, 陈芹芹, 等. 中国大枣加工及产业发展现状[J]. 食品与机械, 2013, 29(4): 214-217.
[6] 李啸宇, 张秋菊. 颗粒状食品视觉检测分选技术的发展[J]. 食品工业科技, 2014(13): 378-381, 386.
[7] 张萌, 许敏. 大枣表面缺陷快速检测方法研究[J]. 江苏农业科学, 2015(7): 331-334.
[8] 郭明玮, 赵宇宙, 项俊平, 等. 基于支持向量机的目标检测算法综述[J]. 控制与决策, 2014(2): 193-200.
[9] 李俊伟. 基于机器视觉技术的新疆鲜葡萄及葡萄干品质分析研究[D]. 乌鲁木齐: 新疆农业大学, 2014: 28-31.
[10] 常甜甜. 支持向量机学习算法若干问题的研究[D]. 西安: 西安电子科技大学, 2010: 18-19.
[11] 赵杰文, 刘少鹏, 邹小波. 基于支持向量机的缺陷红枣机器视觉识别[J]. 农业机械学报, 2008, 39(3): 113-115, 147.