Abstract
As one of the most important physicochemical properties of dietary fiber powders, the water-interacting property is closely related to their technological properties and physiological functions in the food system. However, systematic research is unavailable on the relationship between the water-interacting properties and the composition and particle structure of dietary fiber powders. Therefore, the water-interacting properties of dietary fiber powder and these dependence on composition and particle structure by correlation analysis were investigated, based on the determinations of the hydration properties (water holding capacity, swelling capacity), hygroscopicities (initial absorption rate, absorption time, maximum absorption rate), dietary fiber contents (total dietary fiber, soluble dietary fiber and insoluble dietary fiber), and particle structure (particle size, span, specific surface area, pore volume, pore size) of 40 kinds of dietary fiber powders. The results showed that the water holding capacity of dietary fiber powder was positively correlated with its swelling capacity, while the correlation between its hydration property and hygroscopicity was not significant. In contrast, the hydration property was more depended on the fiber composition than the particle structure. The water holding capacity of the dietary fiber powder were consistent with the uniformity of the particle size. However, the hygroscopicity had no significant correlation with neither the composition or particle structure.
Publication Date
8-28-2019
First Page
1
Last Page
9
DOI
10.13652/j.issn.1003-5788.2019.08.001
Recommended Citation
Jianming, TAO; Caizhi, YAN; and Guohua, ZHAO
(2019)
"Correlation of the water-interacting property of dietary fiber powder with its composition and particle structure,"
Food and Machinery: Vol. 35:
Iss.
8, Article 1.
DOI: 10.13652/j.issn.1003-5788.2019.08.001
Available at:
https://www.ifoodmm.cn/journal/vol35/iss8/1
References
[1] DEVRIES J W, PROSKY L, LI Ben, et al. A historical perspective on defining dietary fiber[J]. Cereal Foods World, 1999, 44(5): 367-369.
[2] 陈龙, 郭晓晖, 李富华, 等. 食用菌膳食纤维功能特性及其应用研究进展[J]. 食品科学, 2012, 33(11): 303-307.
[3] WUTTIPALAKORN P, SRICHUMPUANG W, CHIEWCH-AN N. Effects of pretreatment and drying on composition and bitterness of high-dietary-fiber powder from lime residues[J]. Drying Technology, 2009, 27(1): 133-142.
[4] CHAU Chi-fai, WANG Yi-ting, WEN Yu-ling. Different micronization methods significantly improve the functionality of carrot insoluble fibre[J]. Food Chemistry, 2007, 100(4): 1 402-1 408.
[5] LAN Gao-shuang, CHEN Hai-xia, CHEN Shu-han, et al. Chemical composition and physicochemical properties of dietary fiber from polygonatum odoratum as affected by different processing methods[J]. Food Research International, 2012, 49(1): 406-410.
[6] LPEZ G, ROS G, RINCN F, et al. Relationship between physical and hydration properties of soluble and insoluble fiber of artichoke[J]. Journal of Agricultural and Food Chemistry, 1996, 44(9): 2 773-2 778.
[7] YANG Jing, WANG Hai-Peng, ZHOU Li, et al. Effect of dietary fiber on constipation: A meta analysis[J]. World Journal of Gastroenterology, 2012, 18(48): 7 378-7 383.
[8] 王大为, 吴丽娟, 孙丽琴. 玉米膳食纤维的粉体特性[J]. 食品科学, 2011, 32(17): 65-68.
[9] 王阳, 颜才植, 叶发银, 等. 膳食纤维粉体流动性与其颗粒结构的关系[J]. 食品科学, 2018, 39(10): 84-88.
[10] FOO K Y, HAMEED B H. Preparation, characterization and evaluation of adsorptive properties of orange peel based activated carbon via microwave induced K2CO3 activation[J]. Bioresource Technology, 2012, 104: 679-686.
[11] ZHAO Xiao-yan, YANG Zai-bin, GAI Guo-sheng, et al. Effect of superfine grinding on properties of ginger powder[J]. Journal of Food Engineering, 2009, 91(2): 217-222.
[12] ZHANG Zi-pei, SONG Hui-ge, PENG Zhen, et al. Characterization of stipe and cap powders of mushroom (Lentinus edodes) prepared by different grinding methods[J]. Journal of Food Engineering, 2012, 109(3): 406-413.
[13] 陈绪龙, 赵国巍, 廖正根, 等. 当归超微粉体和普通粉体的粉体学性质比较[J]. 中国实验方剂学杂志, 2010, 16(18): 1-5.
[14] 杜若飞, 冯怡, 刘怡, 等. 中药提取物吸湿特性的数据分析与表征[J]. 中成药, 2008, 30(12): 1 767-1 771.
[15] 皮佳鑫, 高旭, 于悦, 等. 赤芍提取物的吸湿性及不同提取工艺和辅料对其吸湿性的影响[J]. 天津中医药大学学报, 2012, 31(4): 221-224.
[16] TOSH S M, YADA S. Dietaryfibres in pulse seeds and fractions: Characterization, functional attributes, and applications[J]. Food Research International, 2010, 43(2): 450-460.
[17] GMEZ-ORDEZ E, JIMNEZ-ESCRIG A, RUPREZ P. Dietaryfibre and physicochemical properties of several edible seaweeds from the northwestern Spanish coast[J]. Food Research International, 2010, 43(9): 2 289-2 294.
[18] RASPER V F. Effect of preparative procedure on the evaluation of in vitro indigestible residue (dietary fiber)[J]. Food Carbohydrates. 1982, 333-355.
[19] ROBERTSON J A, EASTWOOD M A. A method to measure the water-holding properties of dietaryfibre using suction pressure[J]. British Journal of Nutrition, 1981, 46(2): 247-255.
[20] CADDEN A NN. Comparative effects of particle size reduction on physical structure and water binding properties of several plant fibers[J]. Journal of Food Science, 1987, 52(6): 1 595-1 599.
[21] YALEGAMA L, KARUNARATNE D N, SIVAKANESAN R, et al. Chemical and functional properties offibre concentrates obtained from by-products of coconut kernel[J]. Food Chemistry, 2013, 141(1): 124-130.
[22] NAVARRO-GONZLEZ I, GARCA-VALVERDE V,GARCíA-ALONSO J, et al. Chemical profile, functional and antioxidant properties of tomato peel fiber[J]. Food Research International, 2011, 44(5): 1 528-1 535.
[23] LPEZ-VARGAS J H, FERNNDEZ-LPEZ J, PREZ-LVAREZ J A, et al. Chemical, physico-chemical, technological, antibacterial and antioxidant properties of dietary fiber powder obtained from yellow passion fruit (Passiflora edulis var. flavicarpa) co-products[J]. Food Research International, 2013, 51(2): 756-763.
[24] MANZI P, GAMBELLI L, MARCONI S, et al. Nutrients in edible mushrooms: An inter-species comparative study[J]. Food Chemistry, 1999, 65(4): 477-482.
[25] GUILLAMN E,GARCA-LAFUENTE A, LOZANO M, et al. Edible mushrooms: Role in the prevention of cardiovascular diseases[J]. Fitoterapia, 2010, 81(7): 715-723.
[26] 郑刚, 何李, 赵国华. 高压蒸煮对豆渣膳食纤维理化特性及发酵性能影响[J]. 中国粮油学报, 2010, 25(4): 12-15.
[27] 陶姝颖, 郭晓晖, 令博, 等. 改性葡萄皮渣膳食纤维的理化特性和结构[J]. 食品科学, 2012, 33(15): 171-177.
[28] 康芳芳. 蒸汽爆破处理对豆渣理化特性的影响及在饼干中的应用研究[D]. 新乡: 河南科技学院, 2017: 31.
[29] MA Meng-mei, MU Tai-hua. Effects of extraction methods and particle size distribution on the structural, physicochemical, and functional properties of dietary fiber from deoiled cumin[J]. Food Chemistry, 2016, 194(1): 237-246.
[30] 易甜, 崔文文, 王明锐, 等. 锦橙皮渣膳食纤维微粉化及其功能特性研究[J/OL]. 食品科学. (2018-01-13)[2019-05-27]. http://kns.cnki.net/kcms/detail/11.2206.TS.20181 029.1711.056.html.
[31] 郭增旺, 马萍, 刁静静, 等. 超微型大豆皮水不溶性膳食纤维理化及吸附特性[J]. 食品科学, 2018, 39(5): 106-112.
[32] 张丽媛, 陈如, 吴昊, 等. 超微粉碎对苹果膳食纤维理化性质及羟自由基清除能力的影响[J]. 食品科学, 2018, 39(15): 139-144.
[33] 李璐, 黄亮, 苏玉, 等. 超微化雷竹笋膳食纤维的结构表征及其功能性研究[J/OL]. 食品科学. (2018-06-21)[2019-05-27]. http://kns.cnki.net/kcms/detail/11.2206.TS.20180 622.1100.100.html.
[34] 郑慧萍, 李世伟, 王慧. 膳食纤维—洋车前子壳粉的改性及其表征[J]. 饮食保健, 2017, 4(24): 385-386.